TY - JOUR T1 - Biyouyumlu Malzemelerin Üretimi için 4D Eklemeli İmalat Cihazı Tasarımı ve Üretimi TT - Design and Manufacturing of 4D Additive Manufacturing Device For The Production of Biocompatible Materials AU - Kartal, Yunus AU - Doğan, Deniz AU - Daş, Memik Taylan AU - Metin, Ayşegül Ülkü PY - 2023 DA - July DO - 10.29137/umagd.1288835 JF - International Journal of Engineering Research and Development JO - IJERAD PB - Kirikkale University WT - DergiPark SN - 1308-5506 SP - 840 EP - 847 VL - 15 IS - 2 LA - tr AB - Bu çalışmanın amacı biyouyumlu malzemelerin üretimi için alışılagelmiş kartezyen eksenlerinin haricinde tablada bulunan ve ekseni etrafında dönen dördüncü eksene sahip dört boyutlu (4D) eklemeli imalat cihazı tasarımı ve üretimidir. Bu kapsamda çeşitli mekanik ve elektronik aksesuar veya bileşenlerin teorik ve teknik detayları verilmektedir. Çalışma kapsamındaki dört boyutlu yazıcı üretilen malzemelerin özelliklerinin atmosfer koşullarından etkilenmesini engellemek amacıyla izole bir ortamda çalışmaktadır. Tasarımı ve üretimi gerçekleştirilen cihazda ultraviyole ışın altında poli(2-hidroksietil metakrilat) üretilmiş ve mekanik özellikleri incelenmiştir. KW - Eklemeli imalat KW - dönerek kaplama KW - biyouyumlu malzeme KW - kalıp içerisinde imalat KW - ultraviyole ışın (UV) ile polimerizasyon N2 - The aim of this study is to design and manufacture a 4 Dimensional (4D) additive manufacturing device with a fourth axis rotating around its axis, in addition to conventional Cartesian axes, for the production of biocompatible materials. In this context, theoretical and technical details of various mechanical and electronic accessories or components are given. The four-dimensional printer within the scope of the study works in an isolated environment in order to prevent the properties of the produced materials from being affected by atmospheric conditions. In the device designed and manufactured, poly(2-hydroxyethyl methacrylate) was produced under ultraviolet light and its mechanical properties were investigated. CR - Alsayed, A. A. (2021). Physics of Open Fractures: Reconsidering Tissue Viability, Contamination Risk and Importance of Wound Debridement. Journal of Applied Mathematics and Physics, 09(01), 176–182. https://doi.org/10.4236/jamp.2021.91012 CR - Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011 CR - Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347 CR - Birkelid, A. H., Eikevåg, S. W., Elverum, C. W., & Steinert, M. (2022). High-performance polymer 3D printing – Open-source liquid cooled scalable printer design. HardwareX, 11, e00265. https://doi.org/10.1016/j.ohx.2022.e00265 CR - Eichholz, K. F., Gonçalves, I., Barceló, X., Federici, A. S., Hoey, D. A., & Kelly, D. J. (2022). How to design, develop and build a fully-integrated melt electrowriting 3D printer. Additive Manufacturing, 58(April). https://doi.org/10.1016/j.addma.2022.102998 CR - Garmabi, M. M., Shahi, P., Tjong, J., & Sain, M. (2022). 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Additive Manufacturing, 56. https://doi.org/10.1016/j.addma.2022.102780 CR - Gopinatha, S., & Nagarajanb, N. (2015). Journal of Applied Research and Technology. Journal of Applied Research and Technology, 13, 374–381. CR - Guoqing, Z., Junxin, L., Jin, L., Xiaoyu, Z., & Anmin, W. (2019). 3D metal printer dust filter structural optimal design and key performance research. Materials and Design, 183, 108114. https://doi.org/10.1016/j.matdes.2019.108114 CR - Hachimi, T., Naboulsi, N., Majid, F., Rhanim, R., Mrani, I., & Rhanim, H. (2021). Design and Manufacturing of a 3D printer filaments extruder. Procedia Structural Integrity, 33(C), 907–916. https://doi.org/10.1016/j.prostr.2021.10.101 CR - Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067 CR - Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583 CR - Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346 CR - Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(May), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041 CR - Le Duigou, A., Grabow, M., Castro, M., Toumi, R., Ueda, M., Matsuzaki, R., Hirano, Y., Dirrenberger, J., Scarpa, F., D’Elia, R., Labstie, K., & Lafont, U. (2023). Thermomechanical performance of continuous carbon fibre composite materials produced by a modified 3D printer. Heliyon, 9(3), e13581. https://doi.org/10.1016/j.heliyon.2023.e13581 CR - Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796 CR - Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024 CR - Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726 CR - Minetola, P., Galati, M., Iuliano, L., Atzeni, E., & Salmi, A. (2018). The Use of Self-replicated Parts for Improving the Design and the Accuracy of a Low-cost 3D Printer. Procedia CIRP, 67, 203–208. https://doi.org/10.1016/j.procir.2017.12.200 CR - Ozkan, B., Sameni, F., Bianchi, F., Zarezadeh, H., Karmel, S., Engstrøm, D. S., & Sabet, E. (2022). 3D printing ceramic cores for investment casting of turbine blades, using LCD screen printers: The mixture design and characterisation. Journal of the European Ceramic Society, 42(2), 658–671. https://doi.org/10.1016/j.jeurceramsoc.2021.10.043 CR - Priavolou, C., Troullaki, K., Tsiouris, N., Giotitsas, C., & Kostakis, V. (2022). Tracing sustainable production from a degrowth and localisation perspective: A case of 3D printers. Journal of Cleaner Production, 376(August), 134291. https://doi.org/10.1016/j.jclepro.2022.134291 CR - Pruksawan, S., Chee, H. L., Wang, Z., Luo, P., Chong, Y. T., Thitsartarn, W., & Wang, F. K. (2022). Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chemistry - An Asian Journal, 17(19). https://doi.org/10.1002/asia.202200677 CR - Rouf, S., Raina, A., Irfan Ul Haq, M., Naveed, N., Jeganmohan, S., & Farzana Kichloo, A. (2022). 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143–158. https://doi.org/10.1016/j.aiepr.2022.02.001 CR - SÜRMEN, H. K. (2019). Eklemeli İmalat (3B Baski):Teknoloji̇ler Ve Uygulamalar. Uludağ University Journal of The Faculty of Engineering, 24(2), 373–392. https://doi.org/10.17482/uumfd.519147 CR - Vavoulas, A., Vaiopoulos, N., Hedström, E., Xanthis, C. G., Sandalidis, H. G., & Aletras, A. H. (2016). Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging. Journal of Magnetic Resonance, 269, 146–151. https://doi.org/10.1016/j.jmr.2016.06.005 CR - Vu, A. A., Burke, D. A., Bandyopadhyay, A., & Bose, S. (2021). Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Additive Manufacturing, 39. https://doi.org/10.1016/j.addma.2021.101870 CR - Zi, B., Wang, N., Qian, S., & Bao, K. (2019). Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mechanism and Machine Theory, 132, 207–222. https://doi.org/10.1016/j.mechmachtheory.2018.11.003 UR - https://doi.org/10.29137/umagd.1288835 L1 - https://dergipark.org.tr/en/download/article-file/3108147 ER -