TY - JOUR T1 - On the Interval Valued Cesaro Convergent Sequences Space TT - Aralık Değerli Cesaro Yakınsak Diziler Uzayı Üzerine AU - Kılınç, Gülsen AU - Yıldırım, Mehmet Sezai PY - 2023 DA - December Y2 - 2023 DO - 10.37094/adyujsci.1296930 JF - Adıyaman University Journal of Science JO - ADYU J SCI PB - Adıyaman University WT - DergiPark SN - 2147-1630 SP - 1 EP - 17 VL - 13 IS - 1&2 LA - en AB - The concept of quasilinear space is a field that needs to be matured, the foundations of which were laid by S. M. Aseev's published work in 1986. The simplest nonlinear quasi linear space example is the set 𝑃 which is a class of closed intervals of real numbers. In this study, it was given an interval-valued sequence space using the Cesàro limitation method's matrix domain. Also, its quasilinear space structure, some topological characteristics, and some inclusion relations were examined. KW - Quasilinear Space KW - Interval Valued Sequence KW - Hausdorff Metric KW - Cesàro Convergence. N2 - Quasilineer uzay kavramı, temelleri S. M. Aseev'in 1986 yılında yayınlanan çalışmasıyla atılan, olgunlaşması gereken bir alandır. Lineer olmayan Quasilineer uzayın en basit örneği, gerçek sayıların kapalı aralıklar sınıfı olan 𝑃 kümesidir. Bu çalışmada Cesàro limitleme yönteminin matris etki alanı kullanılarak aralık değerli bir dizi uzayı verildi. Ayrıca bu uzayın quasilineer uzay yapısı, bazı topolojik özellikleri ve bazı kapsama ilişkileri incelendi. CR - Zadeh, L.A., Fuzzy sets, Information and Control 8, 338–353, 1965. CR - Dwyer, P.S., Linear computations, New York, Wiley, 1951. CR - Moore, R.E., Automatic error analysis in digital computation, Lockheed Missiles and Space Co. Technical Report LMSD-48421, Palo Alto, CA, 1959. CR - Moore, R.E. and Yang, C.T., Interval analysis I, LMSD285875, Lockheed Missiles and Space Company, 1962. CR - Moore, R.E., Kearfott, R.B. and Cloud, M.J., Introduction to interval analysis, Society for Industrial and Applied Mathematics, Philadelphia, 2009. CR - Nanda, S., On sequences of fuzzy numbers, Fuzzy Sets and Systems 33, 123–126, 1989. CR - Talo, Ö. and Başar, F., Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Computers and Mathematics with Applications 58, 717–733, 2009. CR - Altın, Y., Mursaleen, M. and Altınok, H., Statistical summability (C,1) for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent & Fuzzy Systems 21 (6), 379–384, 2010. CR - Altınok, H., Çolak, R. and Altın, Y., On the class of λ-statistically convergent difference sequences of fuzzy numbers, Soft Computing 16 (6), 1029–1034, 2012. CR - Altınok, H., Çolak, R. and Et, M., λ−difference sequence spaces of fuzzy numbers, Fuzzy sets and Systems 160, 3128–3139, 2009. CR - Hong, D.H. and Lee, S., Some algebraic properties and a distance measure for interval-valued fuzzy numbers, Information Sciences 148, 1-10, 2002. CR - Şengönül, M. and Eryılmaz, A., On the sequence spaces of interval numbers, Thai Journal of Mathematics, 8(3), 503-510, 2010. CR - Aseev, S.M., Quasilinear operators and their application in the theory of multivalued mappings, Proc. Steklov Inst. Math., 167, 23–52, 1986. CR - Alefeld, G. and Mayer, G., Interval analysis: Theory and applications, J. Comput. Appl. Math., 121, 421–464, 2000. CR - Lakshmikantham, V., Gnana Bhaskar, T. and Vasundhara Devi, J., Theory of set differential equations in metric spaces, Cambridge Scientific Publishers, Cambridge, 2006. CR - Rojas-Medar, M.A., Jiménez-Gamero, M.D., Chalco-Cano, Y., & Viera-Brandão, A.J., Fuzzy quasilinear spaces and applications, Fuzzy Sets and Systems, 152, 173 –190, 2005. CR - Yılmaz, Y., Bozkurt, H., Çakan, S., On orthonormal sets in inner product quasilinear spaces, Creat. Math. Inform. 25 (2), 237-247, 2016. CR - Yılmaz, Y., Bozkurt, H., Levent, H., Çetinkaya, Ü., Inner product fuzzy quasilinear spaces and some fuzzy sequence spaces, Journal of Mathematics, No.2466817, 1-15, 2022. CR - Kreyszig, E., Introductory functional analysis with applications, John Wiley & Sons. Inc., 1978. CR - Şengönül, M., On the Zweier sequence spaces of fuzzy numbers, International Journal of Mathematics and Mathematical Sciences, 2014, Article ID 439169, 1-9, 2014. CR - Şengönül, M., Başar, F., Some new Cesàro sequence spaces of non-absolute type which include the spaces and , Soochow J. Math. 31 (1), 107-119, 2005. CR - Zararsız, Z., Şengönül, M., The Application Domain of Cesàro Matrix on Some Sequence Spaces of Fuzzy Numbers, International Journal of Mathematical Analysis, 9 (1), 1–14, 2015. CR - Chiao, K., Fundamental properties of interval vector max-norm, Tamsui Oxford J. Math. Sci., 18 (2), 219-233, 2002. CR - Yılmaz, Y., Bozkurt, H, Levent, H., Çetinkaya, Ü., Inner product fuzzy quasilinear spaces and some fuzzy sequence spaces, Journal of Mathematics, 2022, Article ID 2466817, 1-15, 2022. CR - Bozkurt, H., Yılmaz, Y., New inner products quasilinear spaces on interval numbers, Journal of Function Spaces, 2016, Article ID:2619271, 1-9, 2016. CR - Levent, H., Yılmaz, Y., Inner-product quasilinear spaces with applications in signal processing, Euro-Tbilisi Mathematical Journal, 14, (4), 25-146, 2021. CR - Levent, H., Yılmaz, Y., Translation, modulation and dilation systems in set-valued signal processing, Carpathian Math. Publ. 10, (1), 143-164, 2018. CR - Bozkurt, H., Yılmaz, Y., Some new results on inner product quasilinear spaces, Cogent Mathematics, 3, 1194801, 2016. CR - Levent, H., Yılmaz, Y., Analysis of signals with inexact data by using interval-valued functions, The Journal of Analysis, 30 (4), 1635-1651, 2022. CR - Levent, H., Yılmaz, Y., Bozkurt, H., On the inner-product spaces of complex interval sequences, Communication in Advanced Mathematical Sciences, 5,4, 180-188, 2022. CR - Levent, H., Yılmaz, Y., Fourier transform of interval sequences and its applications, Journal of Intelligent & Fuzzy Systems, (Accepted) 2023. UR - https://doi.org/10.37094/adyujsci.1296930 L1 - https://dergipark.org.tr/en/download/article-file/3141923 ER -