TY - JOUR T1 - Personalized Intraoperative Radiotherapy Balloon Applicator Design and Production With 3D Printer AU - Yüzer, Öykü AU - Özer, Betül AU - Özdel, Salih Enes AU - Günay, Osman PY - 2023 DA - September Y2 - 2023 DO - 10.22399/ijcesen.1307070 JF - International Journal of Computational and Experimental Science and Engineering JO - IJCESEN PB - İskender AKKURT WT - DergiPark SN - 2149-9144 SP - 205 EP - 212 VL - 9 IS - 3 LA - en AB - Radiation is the energy released from matter. Radiation is divided into two according to its source: natural and artificial radiation. Artificial radiation is used in treatment methods in medicine. One of these treatment methods is brachytherapy. Brachytherapy treatment is applied by placing small radioactive sources inside the body and sending beams directly to the cancerous cell. The main thing to consider in brachytherapy treatment is the selection of the applicator. The applicator is the device that enters the patient's body cavity. In this study, based on the applicators currently used in the medical field, a patient-specific, biocompatible, sterilized, and reusable applicator will be created from PLA material by using a 3D printer.The applicator to be designed will consist of 2 parts: the intrauterine tube and the spherical tip. The spherical tips, which vary according to the size of the tumor, will be pressed to integrate with the tube part of the applicator. Thus, a patient-specific design will be realized by using the spherical tip suitable for the patient’s tumor region.As a result of the project, since the applicator will have spherical tips of different sizes, it completely covers the intrabody cavity of the patient. Thus, the movement of the applicator is limited, and dose distribution is prevented. The treatment process of the patient is improved.Another result is that the prototype applicator printed with PLA filament is produced at a very low cost. Thus, access to the applicator becomes easier and its use in the medical field increases. KW - Applicator KW - 3D Printer KW - Radiation KW - IORT KW - Intraoperative Balloon Radiotherapy CR - [1] Weisstein, E. W. (n.d.). Eric Weisstein’s World of Physics. Eric Weisstein’s World of Physics. https://scienceworld.wolfram.com/physics/ CR - [2] Extremely Low-Frequency Fields. (2007). World Health Organization. CR - [3] Shah, D. J., Sachs, R. K., & Wilson, D. J. (2012). Radiation-Induced Cancer: A Modern View. The British Journal of Radiology. 85:1020. https://doi.org/10.1259/bjr/25026140 CR - [4] Ng, K.H. (2003). Non-Ionizing Radiations – Sources, Biological Effects, Emissions, and Exposures. CR - [5] Hacıosmanoğlu, T. (2017). Natural and Artificial Radiation Sources and Personal Dose Additives. Nuclear Medicine Seminars, 3(3); 166–171. https://doi.org/10.4274/nts.2017.017 CR - [6] Latarjet, R., & Jagger, J. (1995). Rads and Grays: Becquerels and Curies. Radiation Research, 141(1); 105. https://doi.org/10.2307/3579098 CR - [7] Yeyin, N. (2015). Biological Effects of Radiation. Nuclear Medicine Seminars, 1(3); 139–143. https://doi.org/10.4274/nts.002 CR - [8] Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P. & et al. (2012). Radiation Exposure From CT Scans in Childhood and Subsequent Risk of Leukaemia and Brain Tumours: A Retrospective Cohort Study. The Lancet, 380(9840); 499–505. https://doi.org/10.1016/s0140-6736(12)60815-0 CR - [9] Kastan, M. B., & Bartek, J. (2004). Cell-Cycle Checkpoints and Cancer. Nature, 432(7015); 316–323. https://doi.org/10.1038/nature03097 CR - [10] Delaney, G., Jacob, S., Featherstone, C., & Barton, M. (2005). The Role of Radiotherapy in Cancer Treatment. Cancer, 104(6); 1129–1137. https://doi.org/10.1002/cncr.21324 CR - [11] Mayer, C., Gasalberti, D. P., & Kumar, A. (2023). Brachytherapy. In StatPearls. StatPearls Publishing. CR - [12] Paunesku, T., & Woloschak, G. E. (2017). Future Directions of Intraoperative Radiation Therapy: A Brief Review. Frontiers in Oncology, 7. https://doi.org/10.3389/fonc.2017.00300 CR - [13] Abe, M., & Takahashi, M. (1981). Intraoperative Radiotherapy: The Japanese Experience. International Journal of Radiation Oncology*Biology*Physics, 7(7); 863–868. https://doi.org/10.1016/0360-3016(81)90001-8 CR - [14] Kyrgias, G., Hajiioannou, J., Tolia, M., Kouloulias, V., Lachanas, V., Skoulakis, C., et al. (2016). Intraoperative Radiation Therapy (IORT) in Head and Neck Cancer. Medicine, 95(50). https://doi.org/10.1097/md.0000000000005035 CR - [15] Harris, E. E., & Small, W. (2017). Intraoperative Radiotherapy for Breast Cancer. Frontiers in Oncology, 7. https://doi.org/10.3389/fonc.2017.00317 CR - [16] Akboru, M. H., Dincer, S. T., & Gursel, O. K. (2014). Intraoperative Radiotherapy. The Medical Journal of Okmeydani Training and Research Hospital, 29(Supplement 1); 25–34. https://doi.org/10.5222/otd.supp1.2013.025 CR - [17] Şahin, K., & Turan, B. O. (2018). Comparative Analysis of 3D Printer Technologies. Stratejik ve Sosyal Araştırmalar Dergisi, 2(2); 97–116. https://doi.org/10.30692/sisad.441648 CR - [18] Nielsen, A. V., Beauchamp, M. J., Nordin, G. P., & Woolley, A. T. (2020). 3D Printed Microfluidics. Annual review of analytical chemistry (Palo Alto, Calif.), 13(1); 45–65. https://doi.org/10.1146/annurev-anchem-091619-102649 CR - [19] Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A Review on the Fused Deposition Modeling (FDM) 3D Printing: Filament Processing, Materials, and Printing Parameters. Open Engineering, 11(1); 639–649. https://doi.org/10.1515/eng-2021-0063 CR - [20] Pakkanen, J., Manfredi, D., Minetola, P., & Iuliano, L. (2017). About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. Sustainable Design and Manufacturing 2017; 776–785. https://doi.org/10.1007/978-3-319-57078-5_73 CR - [21] Joseph Arockiam, A., Karthikeyan Subramanian, Padmanabhan, R. G., Rajeshkumar Selvaraj, Dilip Kumar Bagal, & Rajesh, S. (2022). A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Materials Today: Proceedings, 50;2057–2064. https://doi.org/10.1016/j.matpr.2021.09.413 CR - [22] Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5); 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x CR - [23] Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review. Advanced Drug Delivery Reviews, 107; 367–392. https://doi.org/10.1016/j.addr.2016.06.012 CR - [24] Crow S. (1993). Sterilization processes. Meeting the demands of today's health care technology. The Nursing Clinics of North America, 28(3); 687–695. CR - [25] Oth, O., Dauchot, C., Orellana, M., & Glineur, R. (2019). How to sterilize 3D-printed objects for surgical use? An evaluation of the volumetric deformation of 3D-printed GENIOPLASTY Guide in PLA and PETG after sterilization by low-temperature hydrogen peroxide gas plasma. The Open Dentistry Journal, 13(1); 410–417. https://doi.org/10.2174/1874210601913010410 CR - [26] Perego, G., Cella, G. D., & Bastioli, C. (1996). Effect of Molecular Weight and Crystallinity on Poly(lactic acid) Mechanical Properties. Journal of Applied Polymer Science, 59(1); 37–43. https://doi.org/10.1002/(sici)1097-4628(19960103)59:1<37::aid-app6>3.0.co;2-n CR - [27] Van de Velde, K., & Kiekens, P. (2002). Biopolymers: Overview of Several Properties and Consequences on Their Applications. Polymer Testing, 21(4); 433–442. https://doi.org/10.1016/s0142-9418(01)00107-6 CR - [28] McKeen, L. W. (2014). Plastics Used in Medical Devices. Handbook of Polymer Applications in Medicine and Medical Devices, 21–53. https://doi.org/10.1016/b978-0-323-22805-3.00003-7 CR - [29] Levy, Y., Paz, A., Yosef, R. B., Corn, B. W., Vaisman, B., Shuhat, S., et al. (2009). Biodegradable Inflatable Balloon for Reducing Radiation Adverse Effects in Prostate Cancer. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(2), 855–867. https://doi.org/10.1002/jbm.b.31467 CR - [30] Melchert, C., Gez, E., Bohlen, G., Scarzello, G., Koziol, I., Anscher, M., et al. (2013). Interstitial Biodegradable Balloon for Reduced Rectal Dose During Prostate Radiotherapy: Results of a Virtual Planning Investigation Based on the Pre- and Post-Implant Imaging Data of an International Multicenter Study. Radiotherapy and Oncology, 106(2); 210–214. https://doi.org/10.1016/j.radonc.2013.01.007 CR - [31] Langelaar, M. (2016). Topology optimization of 3D self-supporting structures for additive manufacturing. Additive manufacturing, 12; 60-70. UR - https://doi.org/10.22399/ijcesen.1307070 L1 - https://dergipark.org.tr/en/download/article-file/3176944 ER -