TY - JOUR T1 - Exopolysaccharide from Rhodococcus pyridinivorans ZZ47 Strain: Evaluation of Biological Activity and Toxicity AU - Ceyhan Güvensen, Nur AU - Taşkaya, Aylin AU - Güler, Cem AU - Şancı, Ebru AU - Karabay, Ülkü PY - 2023 DA - June DO - 10.56430/japro.1307611 JF - Journal of Agricultural Production JO - J Agri Pro PB - Gökhan ARSLAN WT - DergiPark SN - 2757-6620 SP - 63 EP - 71 VL - 4 IS - 1 LA - en AB - Microbial polysaccharides are extracellular polymeric macromolecules excreted in microorganisms. These are widely used in food, cosmetic and pharmaceutical industries. One of them, exopolysaccharides (EPS), plays important role against the factors such as phage attack, antibiotics, toxic compounds or osmotic stress. Recently, this natural polymer has received great attention due to their therapeutic potential. The purpose of the study was to evaluate biological activity and potential toxicity of EPS from Rhodococcus pyridinivorans ZZ47 strain isolated from nature. EPS has no genotoxic effect on Salmonella typhimurium TA98, TA102, and TA1537 strains by Ames Test. No death occurred with single dose oral toxicity test of EPS and LD50 value of it is calculated by >2000 mg/kg in mice. The EPS showed antibiofilm activity on different bacteria. In addition, EPS demonstrated dose-dependent anti-angiogenic properties by HET-CAM test. In conclusion, the isolated EPS has antioxidant activity with no genotoxicity and the biological activities of the polymer indicated that it may be suitable for use in different sectors and industrial applications. KW - Acute toxicity KW - Anti-angiogenic activity KW - Antibiofilm activity KW - Exopolysaccharide KW - Genotoxicity KW - Rhodococcus pyridinivorans CR - Abdel-Wahab, B. A., F. Abd El-Kareem, H., Alzamami, A., A. Fahmy, C., H. Elesawy, B., Mostafa Mahmoud, M., & M. Saied, E. (2022). Novel exopolysaccharide from marine bacillus subtilis with broad potential biological activities: Insights into antioxidant, anti-inflammatory, cytotoxicity, and anti-alzheimer activity. Metabolites, 12(8), 715. https://doi.org/10.3390/metabo12080715 CR - Ahmad, S., Tanweer, M. S., Mir, T. A., Alam, M., Ikram, S., & Sheikh, J. N. (2023). Antimicrobial gum based hydrogels as adsorbents for the removal of organic and inorganic pollutants. Journal of Water Process Engineering, 51, 103377. https://doi.org/10.1016/j.jwpe.2022.103377 CR - Al‐Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L., & Somanath, P. R., (2012). Antiangiogenic therapy for cancer: An update. Pharmacotherapy, 32(12), 1095-1111. https://doi.org/10.1002/phar.1147 CR - Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190 CR - Barcelos, M. C., Vespermann, K. A., Pelissari, F. M., & Molina, G. (2020). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 60(9), 1475-1495. https://doi.org/10.1080/10408398.2019.1575791 CR - Bello, K., Sarojini, B. K., Narayana, B., Rao, A., & Byrappa, K. (2018). A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydrate Polymers, 181, 605–615. https://doi.org/10.1016/j.carbpol.2017.11.106 CR - Botelho, P. S., Maciel, M. I., Bueno, L. A., Maria de Fátima, F. M., Marques, D. N., & Silva, T. M. S. (2014). Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydrate Polymers, 107, 1-6. https://doi.org/10.1016/j.carbpol.2014.02.036 CR - Castellane, T. C. L., Campanharo, J. C., Colnago, L. A., Coutinho, I. D., Lopes, É. M., Lemos, M. V. F., & de Macedo Lemos, E. G. (2017). Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. International Journal of Biological Macromolecules, 96, 361-369. https://doi.org/10.1016/j.ijbiomac.2016.11.123 CR - Chaisuwan, W., Jantanasakulwong, K., Wangtueai, S., Phimolsiripol, Y., Chaiyaso, T., Techapun, C., Phongthai, S., You, S., Regenstein, J. M., & Seesuriyachan, P. (2020). Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience, 35, 100564. https://doi.org/10.1016/j.fbio.2020.100564 CR - Chirakkara, S. P., & Abraham, A. (2023). Exopolysaccharide from the mice ovarian bacterium Bacillus velezensis OM03 triggers caspase-3-dependent apoptosis in ovarian cancer cells. Journal of Applied Pharmaceutical Science, 13(6), 154-164. https://doi.org/10.7324/JAPS.2023.110355 CR - Deepak, V., Ramachandran, S., Balahmar, R. M., Pandian, S. R. K., Sivasubramaniam, S. D., Nellaiah, H., & Sundar, K. (2016). In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines. In Vitro Cellular & Developmental Biology-Animal, 52(2), 163-173. https://doi.org/10.1007/s11626-015-9970-3 CR - Erdoğdu, T. (2018). Enterobacter sp. KF052587 (ZZ40) ve Rhodococcus pyridinivorans AF173005 (ZZ 47) izolatlarından elde edilen ekzopolisakkaritlerin çeşitli yöntemlerle karakterizasyonu ve biyoteknolojik uygulamalarının değerlendirilmesi (Master’s thesis, Muğla Sıtkı Koçman University). (In Turkish) CR - Gürleyendağ, B. (2006) Polisakkarit üreten ekstremofillerin belirlenmesi ve ekzopolisakkarit üretimi (Master’s thesis, Marmara University). (In Turkish) CR - Güvensen, C. N., Erdoğdu, T., Alper, M., & Güneş, H. (2018). Evaluation of antibiofilm and cytotoxic potential of exopolysaccharides from ZZ40 Enterobacter sp. and ZZ47 Rhodococcus pyridinovorans strains. Kastamonu Üniversitesi International Ecology 2018 Symposium. Kastamonu. CR - Güvensen, N. C., Alper, M., & Taşkaya, A. (2022). The evaluation of biological activities of exopolysaccharide from Rhodococcus pyridinivorans in vitro. The European Journal of Research and Development, 2(2), 491-504. https://doi.org/10.56038/ejrnd.v2i2.46 CR - Hu, X., Li, D., Qiao, Y., Wang, X., Zhang, Q., Zhao, W., & Huang, L. (2020). Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. International Journal of Biological Macromolecules, 145, 646-654. https://doi.org/10.1016/j.ijbiomac.2019.12.228 CR - Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10-27. https://doi.org/10.1016/j.ijbiomac.2016.09.104 CR - Krenn, L., & Paper, D. H. (2009). Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine, 16(12), 1083-1088. https://doi.org/10.1016/j.phymed.2009.05.017 CR - Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbial Biofilms, 223-247. https://doi.org/10.1128/9781555817466.ch11 CR - Loeb, W. F., & Quimby, F. W. (1999). The clinical chemistry of laboratory animals, second edition. CRC Press. CR - Madhuri, K., & Prabhakar, V. (2014). Microbial exopolysaccharides: Biosynthesis and potential applications. Oriental Journal of Chemistry, 30(3), 1401-1410. http://dx.doi.org/10.13005/ojc/300362 CR - Mahto, K. U., Priyadarshanee, M., Samantaray, D. P., & Das, S. (2022). Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: Beyond the protective role in survivability. Journal of Cleaner Production, 379, 134759. https://doi.org/10.1016/j.jclepro.2022.134759 CR - Maia, M. R., Marques, S., Cabrita, A. R., Wallace, R. J., Thompson, G., Fonseca, A. J., & Oliveira, H. M. (2016). Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria. Frontiers in Microbiology, 7, 1381. https://doi.org/10.3389/fmicb.2016.01381 CR - Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3-4), 173-215. https://doi.org/10.1016/0165-1161(83)90010-9 CR - Mohd Nadzir, M., Nurhayati, R. W., Idris, F. N., & Nguyen, M. H. (2021). Biomedical applications of bacterial exopolysaccharides: A review. Polymers, 13(4), 530. https://doi.org/10.3390/polym13040530 CR - Moscovici, M. (2015). Present and future medical applications of microbial exopolysaccharides. Frontiers in Microbiology, 6, 1012. https://doi.org/10.3389/fmicb.2015.01012 CR - OECD. (2002). OECD guideline for the testing of chemicals. https://www.oecd-ilibrary.org/test-no-423-acute-oral-toxicity-acute-toxic-class-method_5lmqcr2k7mzp.pdf?itemId=%2Fcontent%2Fpublication%2F9789264071001-en&mimeType=pdf CR - Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021). Anti-angiogenesis in cancer therapeutics: The magic bullet. Journal of the Egyptian National Cancer Institute, 33(1), 1-11. https://doi.org/10.1186/s43046-021-00072-6 CR - Pinto, F. C. M., De-Oliveira, A. C. A., De-Carvalho, R. R., Gomes-Carneiro, M. R., Coelho, D. R., Lima, S. V. C., & Aguiar, J. L. A. (2016). Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses. Carbohydrate Polymers, 137, 556-560. https://doi.org/10.1016/j.carbpol.2015.10.071 CR - Ramirez, M. A. J. R., (2016). Characterization and safety evaluation of exopolysaccharide produced by Rhodotorula minuta BIOTECH 2178. International Journal of Food Engineering, 2(1), 31-35. https://doi.org/10.18178/ijfe.2.1.31-35 CR - Venkatesh, K. S., Gopinath, K., Palani, N. S., Arumugam, A., Jose, S. P., Bahadur, S. A., & Ilangovan, R. (2016). Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: Antibacterial and antibiofilm activity. RSC advances, (48), 42720-42729. https://doi.org/10.1039/C6RA05003D CR - Wang, J., Zhao, X., Yang, Y., Zhao, A., & Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74, 119-126. https://doi.org/10.1016/j.ijbiomac.2014.12.006 CR - Yildiz, B. M., Yuzbasioglu, D., Yuksekdag, Z., Cetin, D., Unal, F., & Suludere, Z. (2023). In vitro genotoxic and antigenotoxic effects of an exopolysaccharide isolated from Lactobacillus salivarius KC27L. Toxicology in Vitro, 86, 105507. https://doi.org/10.1016/j.tiv.2022.105507 CR - Zhao, M., Cui, N., Qu, F., Huang, X., Yang, H., Nie, S., Zha, X., Cui S. W., Nishinari, K., Phillips, G. O., & Fang, Y., (2017). Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers, 171(2017), 252-258. https://doi.org/10.1016/j.carbpol.2017.05.015 UR - https://doi.org/10.56430/japro.1307611 L1 - https://dergipark.org.tr/en/download/article-file/3179201 ER -