TY - JOUR T1 - Normal paracontact metric space form on $W_0$-curvature tensor AU - Mert, Tuğba AU - Atçeken, Mehmet AU - Uygun, Pakize PY - 2023 DA - July DO - 10.54559/jauist.1312242 JF - Journal of Amasya University the Institute of Sciences and Technology JO - J. Amasya Univ. Inst. Sci. Technol. PB - Amasya University WT - DergiPark SN - 2717-8900 SP - 33 EP - 41 VL - 4 IS - 1 LA - en AB - In this article, normal paracontact metric space forms are investigated on $W_0$-curvature tensor. Characterizations of normal paracontact space forms are obtained on $W_0$-curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, and concircular curvature tensors are discussed on $W_0$-curvature tensor. Through these curvature conditions, some important characterizations of normal paracontact metric space forms are obtained. Finally, the need for further research is discussed. KW - W_0-curvature tensors KW - semisymmetric manifold KW - normal paracontact space form CR - S. Kenayuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Mathematical Journal 99 (1985) 173–187. CR - S. Zamkovoy, Canonical connections on paracontact manifolds, Annals of Global Analysis and Geometry 36 (2009) 37–60. CR - J. Welyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results in Mathematics, 54 (2009) 377–387. CR - J. Welyczko, Slant curves in 3-dimensional normal contact metric manifolds, Mediterranean Journal of Mathematics 11 (2014) 965–978. CR - H. B. Pandey, A. Kumar, Anti invariant submanifolds of almost paracontact metric manifolds, Indian Journal of Pure and Applied Mathematics 16 (6) (1985) 586–590. CR - Ü. Yıldırım, M. Atçeken, S. Dirik, S. A normal paracontact metric manifold satisfying some conditions on the M-projectivecurvature tensor. Konuralp Journal of Mathematics 7 (1) (2019) 217–221. CR - Ü. Yıldırım, M. Atçeken, S. Dirik, Pseudo projective curvature tensor satisfying some properties on a normal paracontactmetric manifold, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 (1) (2019) 997–1006. CR - M. Tripathi, P. Gupta, τ-Curvature Tensor on A Semi-Riemannian Manifold. Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129. UR - https://doi.org/10.54559/jauist.1312242 L1 - https://dergipark.org.tr/en/download/article-file/3199784 ER -