TY - JOUR T1 - Pseudoparallel invariant submanifolds of Kenmotsu manifolds AU - Atçeken, Mehmet AU - Karaman, Nurnisa PY - 2023 DA - December DO - 10.54559/jauist.1312261 JF - Journal of Amasya University the Institute of Sciences and Technology JO - J. Amasya Univ. Inst. Sci. Technol. PB - Amasya University WT - DergiPark SN - 2717-8900 SP - 72 EP - 81 VL - 4 IS - 2 LA - en AB - In this paper, we consider pseudoparallel invariant submanifolds, a particular class of invariant submanifolds of Kenmotsu manifolds, on $W_8$ curvature tensor and investigate some of their basic characterizations, such as $W_8$ pseudoparallel, $W_8$-2 pseudoparallel, $W_8$-Ricci generalized pseudoparallel, and $W_8$-2 Ricci generalized pseudoparallel. Moreover, we present some relations between these pseudoparallel invariant submanifolds and semi-parallel invariant submanifolds. We finally discuss the need for further research. KW - Kenmotsu manifold KW - pseudoparallel invariant submanifold KW - 2-pseudoparallel invariant submanifolds CR - K. Kenmotsu, A class of contact Riemannian manifolds, Tohoku Mathematical Journal 24 (1) (1972) 93–103. CR - A. Haseeb, Some results on projective curvature tensor in an ε-Kenmotsu manifold, Palestine Journal of Mathematics 6 (Special Issue: II) (2017) 196–203. CR - Y. Wang, X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions, Filomat 28 (4) (2014) 839–847. CR - Y. Wang, W. Wang, An Einstein-like metric on almost Kenmotsu manifold, Filomat 31 (15) (2017) 4695–4702. CR - C. Özgür, U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica 17 (2) (2006) 221–228. CR - M. M. Tripathi, P. Gupta, τ-curvature tensor on a semi-Riemannian manifold, Journal of Advanced Mathematical Studies 4 (1) (2011) 117–129. CR - R. N. Singh, S. K. Pandey, G. Pandey, On W_2-curvature tensor in a Kenmotsu manifold, Tamsui Oxford Journal of Information and Mathematical Sciences 29 (2) (2013) 129–141. CR - D. G. Prakasha, B. S. Hadimani, On the conharmonic curvature tensor of Kenmotsu manifolds with generalized Tanaka-Webster connection, Miskole Mathematical Notes 19 (1) (2018) 491–503. CR - U. C. De, G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian Journal of Pure and Applied Mathematics 35 (2) (2004) 159–165. CR - K. De, U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bulletin of the Transilvania University of Braşov Series III: Mathematics and Computer Science 6 (55) (1) (2013) 9–22. CR - M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Mathematics 6 (7) (2021) 7320–7332. CR - P. Uygun, S. Dirik, M. Atçeken, T. Mert, Some characterizations invariant submanifolds of a (κ,μ)-para contact space, Journal of Engineering Research and Applied Science 1 (11) (2022) 1967–1972. CR - T. Mert, M. Atçeken, A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds, Filomat 37 (15) (2023) 5095–5107. UR - https://doi.org/10.54559/jauist.1312261 L1 - https://dergipark.org.tr/en/download/article-file/3199850 ER -