TY - JOUR T1 - Extension of the Lotka-Volterra competition model AU - Rasouli, S.h. PY - 2024 DA - October DO - 10.15672/hujms.1315963 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1401 EP - 1407 VL - 53 IS - 5 LA - en AB - In this paper, we introduce the ($p,q$)-Lotka-Volterra competition model which is extension of classical Lotka-Volterra competition model. The main purpose is to give some results on the existence and non-existence of positive solutions. Upper and lower solutions technique and comparison arguments plays a significant role in our main proof. KW - Lotka-Volterra competition model KW - (p KW - q)-Laplacian KW - upper and lower solutions CR - [1] J. Ali and R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parameters, J. Math. Anal. Appl. 335, 1013-1019, 2007. CR - [2] M.O. Alves, M.T.O. Pimenta and A. Suuárez, Lotka-Volterra models with fractional diffusion, Proc. Royal. Soc. Edin. 147A, 505-528, 2017. CR - [3] R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, Pitman, London, 1978. CR - [4] G. Astrita and G. Marrucci, Principles of non-Newtonian fluid mechanics, McGraw- Hill, 1974. CR - [5] L. Baldelli, Y. Brizi and R. Filippucci, Multiplicity results for (p, q)-Laplacian equations with critical exponent in $\mathbb{R}^{N}$ and negative energy, Calc. Var. 60 (8), 1-30, 2021. CR - [6] V. Benci, D. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension 3, Rev. Math. Phys. 10 (3), 315-344, 1998. CR - [7] M. Bruschi and F. Calogero, Simple extensions of the Lotka-Volterra prey-predator model, The Mathematical Intelligencer 40, 16-19, 2018. CR - [8] S. Carl, V.K. Le and D. Motreanu, Nonsmooth variational problems and their inequalities, Comparaison principles and applications, Springer, New York, 2007. CR - [9] W. Cintra, M. Molina-Becerra and A. Suárez, The Lotka-Volterra models with nonlocal reaction terms, Communs. Pure. Appl. Anal. 21, 3865-3886, 2022. CR - [10] C. Cosner and A.C. Lazer, Stable coexistence states in the Volterra-Lotka competition model with fiffusion, Siam. J. Appl. Math. 44, 1112-1132, 1984. CR - [11] E.N. Dancer, On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Am. Math. Soc. 326, 829859, 1991. CR - [12] P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer Verlag, Berlin-New York, 1979. CR - [13] J. López-Gómez and R. Pardo, Coexistence regions in Lotka-Volterra models with diffusion, Nonlinear Anal. 19, 1128, 1992. CR - [14] R. Guefaifia, J. Zuo, S. Boulaaras and P. Agarwal, Existence and multiplicity of positive weak solutions for a new class of (p, q)-Laplacian systems, Miskolc Math. Notes 21, 861-872, 2020. CR - [15] D.D. Hai and R. Shivaji, An existence result on positive solutions for a class of p- Laplacian systems, Nonl. Anal. 56, 1007-1010, 2004. CR - [16] Sze-Bi Hsu and Xiao-Qiang Zhao, A Lotka-Volterra competition model with seasonal succession, J. Math. Biol. 64, 109-130, 2012. CR - [17] S.A. Khafagy, Existence results for weighted (p, q)-Laplacian nonlinear system, Appl. Math. E-Notes 17, 242-250, 2017. CR - [18] E.K. Lee, R. Shivaji and J. Ye, Positive solutions for infinite semipositone problems with falling zeros, Nonl. Anal. 72, 4475-4479, 2010. CR - [19] L. Ma and S. Guo, Bifurcation and stability of a two-species diffusive lotka-volterra model, Commun. Pure. Appl. Annal. 19, 1205-1232, 2020. CR - [20] A. Muhammadhaji, A. Halik and Hong-Li Li, Dynamics in a ratio-dependent Lotka- Volterra competitive-competitive-cooperative system with feedback controls and delays, Adv. Diffrence. Eqs. 230, 1-14, 2021. CR - [21] E. Diz-Pita and M.V. Otero-Espinar, Predator-Prey Models: A Review of Some Recent Advances, Mathematics. 9, 1-34, 2021. CR - [22] S.H .Rasouli, Existence of solutions for singular (p, q)-Kirchhoff type systems with multiple parameters, Elect. J. Diff. Eqs 69, 1-8, 2016. CR - [23] S.H .Rasouli, Z. Halimi and Z.Mashhadban, A remark on the existence of positive weak solution for a class of (p, q)-Laplacian nonlinear system with sign-changing weight, Nonl. Anal. 73, 385-389, 2010. CR - [24] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1996. CR - [25] L. Wang and K. Li, On positive solutions of the Lotka-Volterra cooperating models with diffusion, Nonlinear Analysis. 53, 1115-1125, 2003. CR - [26] Z. Zhu, R. Wu, L. Lai and X. Yu, The influence of fear effect to the Lotka-Volterra predator-prey system with predator has other food resource, Adv. Diffrence. Eqs. 237, 1-14, 2020. UR - https://doi.org/10.15672/hujms.1315963 L1 - https://dergipark.org.tr/en/download/article-file/3215934 ER -