TY - JOUR T1 - Heat-wave associated vibriosis in Russia, 2003-2021 AU - Leonov, Vadim PY - 2023 DA - December Y2 - 2023 DO - 10.20518/tjph.1316091 JF - Turkish Journal of Public Health JO - TJPH PB - Halk Sağlığı Uzmanları Derneği WT - DergiPark SN - 1304-1088 SP - 412 EP - 416 VL - 21 IS - 3 LA - en AB - Objectives: Noteworthy peaks of non-cholera vibriosis occurred in Russia’s Rostov and Volgograd regions in 2007 and 2010. The origins of these emergent vibrio cases have not been fully understood. Here, we investigate a possible link between the heat wave event and disease emergence.Methods: This study employed Pearson correlation and regression analyses to identify the linkage between ambient temperature and Vibrio cases.Results: The correlation test between the mean summer air temperatures for both regions and the Vibrio-infectious cases per year, shows a significant correlation between the mean summer temperature and the infection: r= 0.62 (p=0.023) for the Rostov region and r = 0.78 (p=0.012) for the Volgograd region.Conclusion: The heat waves in the summers of 2007 and 2010 suggest having facilitated the upsurge of V. cholerae non-cholera diseases. The warming tendency has to be considered in predicting outbreaks. KW - Global warming KW - vibrio infections KW - Vibrio KW - Russia CR - Baker-Austin C, Trinanes J, Salmenlinna S, Löfdahl M, Siitonen A, Taylor N, et al. Heat Wave–Associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016; 22(7):1216-1220. https://doi.org/10.3201/eid2207.151996 CR - Galanis E, Otterstatter M, Taylor M. Measuring the impact of sea surface temperature on the human incidence of Vibrio sp. infection in British Columbia, Canada, 1992–2017. Environ Health. 2020; 9, 58. https://doi.org/10.1186/s12940-020-00605-x CR - Gildas Hounmanou Y, Engberg J, Bjerre K, Holt H, Olesen B, Voldstedlund M, et al. Correlation of High Seawater Temperature with Vibrio and Shewanella Infections, Denmark, 2010–2018. Emerg Infect Dis. 2023; 29(3):605-608. https://doi.org/10.3201/eid2903.221568 CR - Martinez-Urtaza J, Trinanes J, Abanto M, Lozano-Leon A, Llovo-Taboada J, Garcia-Campello M, et al. Epidemic Dynamics of Vibrio parahaemolyticus Illness in a Hotspot of Disease Emergence, Galicia, Spain. Emerg Infect Dis. 2018;24(5):852-859. https://doi.org/10.3201/eid2405.171700 CR - Paz S, Bisharat, N, Paz E., Kidar O, Cohen D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ Res. 2007;103(3):390-6. doi: 10.1016/j.envres.2006.07.002. CR - RStudio Team RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, 2020 URL http://www.rstudio.com/ CR - Beck H, Zimmermann N, McVicar T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018; 5, 180214 https://doi.org/10.1038/sdata.2018.214 CR - Bedritsky AI. (Ed.) Russian Hydrometeorological Encyclopedia; Letnii Sad SPB: Moscow, Russia; 2008;1: 336p. [In Russ.] CR - Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332(6026), 220–224, doi:10.1126/science.1201224 CR - Vezzulli L. Global expansion of Vibrio spp. in hot water. Environ Microbiol. Rep. 2022; 15(2):77-79. doi: 10.1111/1758-2229.13135. 151996 CR - Shartova N, Mironova V, Zelikhina S, Korennoy F, Grishchenko M Spatial patterns of West Nile virus distribution in the Volgograd region of Russia, a territory with long-existing foci. PLoS Negl Trop Dis. 2022; 16(1): e0010145. https://doi.org/10.1371/journal.pntd.0010145 UR - https://doi.org/10.20518/tjph.1316091 L1 - https://dergipark.org.tr/en/download/article-file/3216478 ER -