TY - JOUR T1 - BİR BOYUTLU SANAL DOKU ORTAMINDAKİ SICAKLIK DEĞİŞİMİNİN UÇUŞ ZAMANI YÖNTEMİ İLE HESAPLANMASI TT - Measurement Temperature Change In 1D Virtual Phantom Using Time of Flight Method AU - Uyğun, Mustafa AU - Küçüka, Serhan PY - 2023 DA - December DO - 10.24012/dumf.1321801 JF - Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi JO - DUJE PB - Dicle University WT - DergiPark SN - 1309-8640 SP - 661 EP - 669 VL - 14 IS - 4 LA - tr AB - Bu çalışmada bilgisayar ortamında akustik fantom oluşturulmuş ve fantom üzerinde iki farklısıcaklık dağılımı için akustik simülasyon gerçekleştirilmiştir. İki farklı sıcaklık dağılımı içinelde edilen dönüş sinyallerine çapraz korelasyon uygulanarak yerel noktalardaki zamankaymaları hesaplanmıştır. Zaman kayması vektörünün eksenel eğimlerinin doku sabiti ileçarpılmasıyla her noktadaki sıcaklık değişimi hesaplanmıştır. Sıcaklık tahmininde, analizsonucunda bulunan zaman kaymalarının yatay eksene göre eğimlerinin bulunması için geri farkyöntemi ve doğru uydurma yöntemi kullanılmış ve sonuçlar karşılaştırılmıştır. Sıcaklık dağılımıilk durumda doku 37°C’de üniform sıcaklıkta ve ikinci durumda doku merkezi 45°C veetrafında çan eğrisi yaparak azalan şekilde tanımlanmıştır. Sıcaklık ölçümündeki maksimumsapmaların, geri fark yönteminde 1.99°C, doğru uydurma yönteminde 0.75°C olduğu vekullanılan modelin tek boyutlu uygulamada yeterli olduğu görülmüştür. Bu çalışma ile birlikteileride yapılacak çok boyutlu simülasyon ve deneysel çalışmalar için taban oluşturulmuştur. KW - ultrason KW - akustik KW - dokularda sıcaklık ölçümü KW - simülasyon KW - uçuş zamanı yöntemi N2 - In study, virtual acoustic phantom was created and acoustic simulation was performed for twodifferent temperature distributions. Local time-shifts were calculated by applying crosscorrelation to ultrasonic signals obtained from simulation results. The temperature distributionwas estimated by multiplying the axial slopes of the time shift vector by the tissue constant. Inthe temperature estimation, the back difference method and the linear fitting were used to findthe slopes of the time shifts, and the results of two methods were compared. In study, the firsttemperature distribution, defines the tissue is uniform at 37°C, and in the second temperaturedistribution, the temperature is reaching 45°C in the center of tissue in the shape of Gaussiancurve. The maximum deviation in the temperature estimation were found 1.99°C in the backdifference method and 0.75°C in the linear fitting method. Study shows that, time-shift basedtemperature estimation is successful in on one-dimensional application. Thus, basis for futuremultidimensional simulation and experimental studies has been established. CR - [1] Dewhirst, M.W., Abraham, J. ve Viglianti, B. "Evolution of Thermal Dosimetry for Application of Hyperthermia to Treat Cancer". Advances in Heat Transfer, 47: 397–421. (2015) CR - [2] Chu, K.F. ve Dupuy, D.E. "Thermal ablation of tumours: Biological mechanisms and advances in therapy". Nature Reviews Cancer, 14(3): 199–208. (2014) CR - [3] Smith, S. ve Gillams, A. "Imaging appearances following thermal ablation". Clinical Radiology, 63(1): 1–11. (2008) CR - [4] Lee, F.-F., He, Q., Gao, J., Pan, A., Sun, S., Liang, X. vd. "Evaluating HIFU-mediated local drug release using thermal strain imaging: Phantom and preliminary in-vivo studies". Medical Physics, 46(9): 3864–76. (2019) CR - [5] Rieke, V. ve Pauly, K.B. "MR thermometry". Journal of Magnetic Resonance Imaging, 27(2): 376–90. (2008) CR - [6] Blackwell, J., Kraśny, M.J., O’Brien, A., Ashkan, K., Galligan, J., Destrade, M. vd. "Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices". Journal of Magnetic Resonance Imaging, 55(2): 389–403. (2022) CR - [7] Lewis, M.A., Staruch, R.M. ve Chopra, R. "Thermometry and ablation monitoring with ultrasound". International Journal of Hyperthermia, 31(2): 163–81. (2015) CR - [8] Maass-Moreno, R., Damianou, C.A. ve Sanghvi, N.T. "Tissue temperature estimation in-vivo with pulse-echo". Proceedings of the IEEE Ultrasonics Symposium, Seattle. p. 1225–9. (1995) CR - [9] Simon, C., Vanbaren, P. ve Ebbini, E.S. "Two-dimensional temperature estimation using diagnostic ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4): 1088–99. (1998) CR - [10] Anand, A., Savéry, D. ve Hall, C. "Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(1): 23–30. (2007) CR - [11] Sakakibara, R., Shindo, Y., Kato, K., Choi, P.K. ve Takeuchi, A. "Basic study of 3-D non-invasive measurement of temperature distribution using ultrasound images during HIFU heating". Advances in Science, Technology and Engineering Systems, 5(6): 1306–11. (2020) CR - [12] Liu, D. ve Ebbini, E.S. "Real-time 2-D temperature imaging using ultrasound". IEEE Transactions on Biomedical Engineering, 57(1): 12–6. (2010) CR - [13] Varghese, T., Zagzebski, J.A., Chen, Q., Techavipoo, U., Frank, G., Johnson, C. vd. "Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results". Ultrasound in Medicine and Biology, 28(3): 321–9. (2002) CR - [14] Chiang, H.K., Liao, C.-K., Chou, Y.-H., Pan, T.-T. ve Pan, S.-C. "In-vitro ultrasound temperature monitoring in bovine liver during RF ablation therapy using autocorrelation". Proceedings of the IEEE Ultrasonics Symposium, Münih. p. 1439–42. (2002) CR - [15] Bayat, M. "Non-Invasive In Vivo Ultrasound Temperature Estimation", Doktora Tezi, The Faculty Of The Graduate School Of The University Of Minnesota. [Minneapolis]. (2014) CR - [16] Park, S., Hwang, J., Park, J.-E., Ahn, Y.-C. ve Kang, H.W. "Application of Ultrasound Thermal Imaging for Monitoring Laser Ablation in Ex Vivo Cardiac Tissue". Lasers in Surgery and Medicine, 52(3): 218–27. (2020) CR - [17] Foiret, J. ve Ferrara, K. "Advances in thermal strain imaging: 3D motion and tumor validation studies". 2015 IEEE International Ultrasonics Symposium, IUS 2015, Taipei. p. 1–4. (2015) CR - [18] Nguyen, M.M., Ding, X., Leers, S.A. ve Kim, K. "Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer". Ultrasound in Medicine and Biology, 43(6): 1263–74. (2017) CR - [19] Shah, J., Thomsen, S., Milner, T.E. ve Emelianov, S.Y. "Ultrasound guidance and monitoring of laser-based fat removal". Lasers in Surgery and Medicine, 40(10): 680–7. (2008) CR - [20] Yin, C., Wang, G., Yang, K., Tu, J., Guo, X. ve Zhang, D. "Thermal strain imaging in vivo using interpolated IQ-images". Ultrasonics, 110: 106292. (2021) CR - [21] Arthur, R.M., Straube, W.L., Starman, J.D. ve Moros, E.G. "Noninvasive temperature estimation based on the energy of backscattered ultrasound". Medical Physics, 30(6): 1021–9. (2003) CR - [22] Maraghechi, B., Kolios, M.C. ve Tavakkoli, J. "Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues". International Journal of Hyperthermia, 36(1): 964–74. (2019) CR - [23] Shaswary, E., Assi, H., Yang, C., Kumaradas, J.C., Kolios, M.C., Peyman, G. vd. "Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics". Ultrasonics, 114: 106406. (2021) CR - [24] Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K. vd. "Photoacoustic imaging and temperature measurement for photothermal cancer therapy". Journal of Biomedical Optics, 13(3): 034024. (2008) CR - [25] MATLAB. "R2020a". The MathWorks Inc., Natick, Massachusetts. (2020) CR - [26] Duck, F.A. "Physical properties of tissue: A comprehensive reference book". Academic Press Inc, ISBN 0-12-222800-6, Cambridge. (1990) CR - [27] Treeby, B.E., Budisky, J., Wise, E.S., Jaros, J. ve Cox, B.T. "Rapid calculation of acoustic fields from arbitrary continuous-wave sources". Journal of the Acoustical Society of America, 143(1): 529–37. (2018) CR - [28] k -Wave. "A MATLAB toolbox for the time-domain simulation of acoustic wave fields". http://k-wave.org. CR - [29] Viola, F. ve Walker, W.F. "A comparison of the performance of time-delay estimators in medical ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(4): 392–401. (2003) UR - https://doi.org/10.24012/dumf.1321801 L1 - https://dergipark.org.tr/en/download/article-file/3239879 ER -