TY - JOUR T1 - Deferred statistical order convergence in Riesz spaces AU - Aydın, Abdullah AU - Küçükaslan, Mehmet PY - 2024 DA - October DO - 10.15672/hujms.1322652 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1368 EP - 1377 VL - 53 IS - 5 LA - en AB - In recent years, researchers have focused on exploring different forms of statistical convergence in Riesz spaces, such as statistical order convergence and statistical unbounded order convergence. This study aims to present the concept of deferred statistical convergence within Riesz spaces, specifically concerning its relationship with order convergence. Furthermore, we delve into the interconnections between deferred statistical order convergence and various other types of statistical convergence. Moreover, we explore in depth the intricate connections between deferred statistical order convergence and other notable forms of statistical convergence. We provide valuable insights into the broader framework of statistical convergence theory in Riesz spaces. KW - Riesz space KW - deferred statistical convergence KW - order convergence KW - deferred statistical order convergence CR - [1] R.P. Agnew, On deferred Cesàro means, Anna. Math. 33 (3), 413-421, 1932. CR - [2] C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs Centrum, 2003. CR - [3] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006. CR - [4] A. Aydın, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (3), 998-1005, 2020. CR - [5] A. Aydın, The statistically unbounded $\tau$-convergence on locally solid vector lattices, Turk. J. Math. 44 (3), 949-956, 2020. CR - [6] A. Aydın, The statistical multiplicative order convergence in vector lattice algebras, Fact. Univ. Ser.: Math. Infor. 36 (2), 409-417, 2021. CR - [7] A. Aydın, M. Et, Statistically multiplicative convergence on locally solid Riesz algebras, Turk. J. Math. 45 (4), 1506-1516, 2021. CR - [8] A. Aydın, E. Emelyanov and S. G. Gorokhova, Full lattice convergence on Riesz spaces, Indagat. Math. 32 (3), 658-690, 2021. CR - [9] Z. Ercan, A characterization of u-uniformly completeness of Riesz spaces in terms of statistical u-uniformly pre-completeness, Demons. Math. 42 (2), 383-387, 2009. CR - [10] M. Et, P. Baliarsingh, H. . Kandemir and M. Küçükaslan, On $\mu$-deferred statistical convergence and strongly deferred summable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 115(1), Paper No. 34, 14 pp, 2021. CR - [11] M. Et, M. Cinar and H. S. Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Math. 5, Paper No. 4, 3731-3740, 2020. CR - [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951. CR - [13] J. Fridy, On statistical convergence, Analysis 5 (4), 301-313, 1985. CR - [14] M. Küçükaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyung. Math. J. 56 (2), 357-366, 2016. CR - [15] M. Küçükaslan, U. Deer and U. Dovgoshey, On statistical convergence of metric valued sequences, Ukrain. Math. J. 66 (5), 796-805, 2014. CR - [16] W.A.J. Luxemburg and A.C. Zaanen, Vector Lattices I, North-Holland Pub. Co., Amsterdam, 1971. CR - [17] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambr. Phil. Soc. 104 (1), 141-145, 1988. CR - [18] F. Riesz, Sur la Décomposition des Opérations Fonctionelles Linéaires. Bologna, Atti Del Congresso Internazionale Dei Mathematics Press, 1928. CR - [19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74, 1951. CR - [20] B.C. Tripathy, On statistically convergent sequences, Bul. Calcut. Math. Soc. 90, 259262, 1998. CR - [21] A.C. Zaanen, Riesz Spaces II, North-Holland Publishing C., Amsterdam, 1983. UR - https://doi.org/10.15672/hujms.1322652 L1 - https://dergipark.org.tr/en/download/article-file/3243682 ER -