TY - JOUR T1 - Optimizing Infill Parameters for Improved Mechanical Performance and Cost Savings in Additive Manufacturing AU - Arıkan, Volkan PY - 2023 DA - September Y2 - 2023 DO - 10.22399/ijcesen.1324071 JF - International Journal of Computational and Experimental Science and Engineering JO - IJCESEN PB - İskender AKKURT WT - DergiPark SN - 2149-9144 SP - 225 EP - 232 VL - 9 IS - 3 LA - en AB - In this study, compression tests were performed on the samples produced with PLA filament with different infill parameters and infill densities by additive manufacturing method and their mechanical performances & static energy absorption capabilities were evaluated. According to the results obtained, it was determined that the samples with triangular and tri-hexagonal infill parameters performed better and it has been shown that time, material and energy can be saved without losing materials mechanical performance. KW - Additive Manufacturing KW - Infill Parameters KW - Fused Deposition Modelling KW - Mechanical Properties CR - [1] S.K. Selvamani, W.K. Ngui, K. Rajan, M. Samykano, Reji Kumar R, Avinash M. Badadhe, (2022). Investigation of bending and compression properties on PLA-brass composite using FDM, Physics and Chemistry of the Earth 128 CR - [2] Rajan, K., Samykano, M., Kadirgama, K., Harun, W.S.W., Rahman, M.M., 2022. Fused deposition modeling: process, materials, parameters, properties, and applications. Int. J. Adv. Manuf. Technol. 120 (3–4); 1531–1570. CR - [3] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui. (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. Part B Eng. 143;172–196. CR - [4] O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian. (2019). Additive manufacturing: challenges, trends, and applications. Adv. Mech. Eng. 11 (2). CR - [5] K.V. Wong, A. Hernandez, (2012). A review of additive manufacturing, ISRN Mech. Eng. 1–10 CR - [6] M. O. Oteyaka, F. H. Çakir, M. A. Sofuoglu. (2022). Effect of infill pattern and ratio on the flexural and vibration damping characteristics of FDM printed PLA samples, Materials Today Communications 33. CR - [7] Kumaresan, R., Samykano, M., Kadirgama, K., Ramasamy, D., Keng, N.W., Pandey, A.K., (2021). 3D printing technology for thermal application: a brief review. J. Adv. Res. Fluid Mech. Therm. Sci. 83 (2); 84–97. CR - [8] Braconnier, D.J., Jensen, R.E., Peterson, A.M., (2020). Processing parameter correlations in material extrusion additive manufacturing. Addit. Manuf. 31 https://doi.org/ 10.1016/j.addma.2019.100924. CR - [9] Md. Qamar Tanveer, Gautam Mishra, Siddharth Mishra, Rohan Sharma (2022). Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review, Materials Today: Proceedings 62;100-108. CR - [10] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero. (2016). Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing, 3D Print, Addit. Manuf. 3 (3): 183–192. CR - [11] K.P. Motaparti, G. Taylor, M.C. Leu, K. Chandrashekhara, J. Castle, M. Matlack, (2016). Effects of build parameters on compression properties for ULTEM 9085 parts by fused deposition modeling, Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF. 964–977. CR - [12] D. Abbas, D. Mohammad Othman, H. Basil Ali, C. Author (2017). Effect of infill Parameter on compression property in FDM Process, Int. J. Eng. Res. And Application Www.Ijera.Com. 7; 16–19. 10.9790/9622-0710021619. CR - [13] J.M. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núñez, (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Mater. Des. 124; 143–157. CR - [14] S.M. Lebedev, O.S. Gefle, E.T. Amitov, D.V. Zhuravlev, D.Y. Berchuk, E.A. Mikutskiy. (2018). Mechanical properties of PLA-based composites for fused deposition modeling technology, Int. J. Adv. Manuf. Technol. 97 (1-4): 511–518. CR - [15] A. Rodríguez-Panes, J. Claver, A. Camacho. (2018). The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis, Materials (Basel). 11 :1333. CR - [16] A. Nadernezhad, S. Unal, N. Khani, B. Koc. (2019). Material extrusion-based additive manufacturing of structurally controlled poly(lactic acid)/carbon nanotube nanocomposites, Int. J. Adv. Manuf. Technol. 102 (5-8): 2119–2132. CR - [17] O.H. Ezeh, L. Susmel. (2019). Fatigue strength of additively manufactured polylactide (PLA): effect of raster angle and non-zero mean stresses, Int. J. Fatigue. 126 :319–326. CR - [18] M.Q. Tanveer, A. Haleem, M. Suhaib. (2019). Effect of variable infill density on mechanical behaviour of 3-D printed PLA sample: an experimental investigation, SN Appl. Sci. 1: 1701. CR - [19] T. Yao, Z. Deng, K. Zhang, S. Li. (2019). A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations, Compos. Part B Eng. 163:393–402. CR - [20] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar. (2019). Mechanical property of FDM printed ABS: influence of printing parameters, Int. J. Adv. Manuf. Technol. 102 (9-12): 2779–2796. CR - [21] B. Aloyaydi, S. Sivasankaran, A. Mustafa. (2020). Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid, Polym. Test. 87. CR - [22] K.N. Gunasekaran, V. Aravinth, C.B. Muthu Kumaran, K. Madhankumar, S. Pradeep Kumar. (2021). Investigation of mechanical properties of PLA printed materials under varying infill density, Mater. Today Proc. 45: 1849–1856. CR - [23] S.R. Rajpurohit, H.K. Dave. (2021). Impact strength of 3D printed PLA using open source FFF-based 3D printer, Prog. Addit. Manuf. 6 (1): 119–131. CR - [24] P. Yadav, A. Sahai, R.S. Sharma. (2021). Strength and Surface Characteristics of FDM Based 3D Printed PLA Parts for Multiple Infill Design Patterns, J. Inst. Eng. Ser. C. 102 (1): 197–207. CR - [25] A. Farazin, M. Mohammadimehr. (2021). Effect of different parameters on the tensile properties of printed Polylactic acid samples by FDM: experimental design tested with MDs simulation, Int. J. Adv. Manuf. Technol. CR - [26] P.K. Mishra, P. Senthil, S. Adarsh, M.S. Anoop. (2021). An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Compos. Commun. 24. CR - [27] P. Patil, D. Singh, S.J. Raykar, J. Bhamu. (2021). Multi-objective optimisation of process parameters of Fused Deposition Modeling (FDM) for printing Polylactic Acid (PLA) polymer components, Mater. Today Proc. 45: 4880–4885. CR - [28] M. Samykano. (2021). Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA), Arab. J. Sci. Eng. 46 (8): 7875–7892. UR - https://doi.org/10.22399/ijcesen.1324071 L1 - https://dergipark.org.tr/en/download/article-file/3249767 ER -