TY - JOUR T1 - Microwave-Assisted Fabrication of Pd, Co and Ni Nanoparticles Modified-SiO2; as Catalysts in the Reduction Reaction of Organic Pollutants AU - Çağlar Yavuz, Sevtap AU - Yavuz, Emre AU - Dayan, Serkan PY - 2023 DA - December DO - 10.18466/cbayarfbe.1327271 JF - Celal Bayar University Journal of Science JO - CBUJOS PB - Manisa Celal Bayar University WT - DergiPark SN - 1305-130X SP - 323 EP - 332 VL - 19 IS - 4 LA - en AB - Nanomaterials have been used in catalytic degradation of organic pollutants also act as catalysts in for many years. Due to excellent catalytic performances of metal-based nanoparticles, these materials have been used extensively in various hybrid catalyst synthesis. The main subject of this study, heterogeneous catalysis is a low cost and multi-purpose process for many pollutants. Catalytic degradation of organic pollutants such as; 2-Nitrophenol, Quinolin Yellow and Rhodamine B was investigated by using Ni, Co, Pd nanoparticles modified SiO2 based nanomaterials. The co-doping effect on the prepared nanomaterials has been investigated with different characterization methods in terms of structural and morphological features: scanning electron microscopy, UV/Vis absorption spectroscopy, energy-dispersive X-ray spectroscopy and foruier-transform infrared spectroscopy. The highest catalytic reduction efficiencies (97.6% and 97.5%) for 2-nitrophenol and Rhodamine B was obtained by Pd-PEG-AP@SiO2 respectively. The synthesized Co-PEG-AP@SiO2 illustrated higher catalytic reduction efficiency for Quinolin Yellow (70.1%) at the end of 60s. The prepared M-PEG-AP@SiO2 nanomaterial (M: Pd,Co,Ni) can be able to utilized degradation of organic contaminants effectively. KW - Catalysts KW - Catalytic degradation KW - Nanoparticles KW - SiO2 nanomaterials CR - [1]. Da’na, E., Taha, A., El-Aassar, M. R. 2023. Catalytic reduction of p-nitrophenol on MnO2/zeolite-13X prepared with lawsonia inermis extract as a stabilizing and capping agent. Nanomaterials, 13(4): 785. CR - [2]. Kumar, R., Barakat, M., Daza, Y., Woodcock, H., Kuhn, J. 2013. EDTA functionalized silica for removal of Cu (II), Zn (II) and Ni (II) from aqueous solution. Journal of Colloid and Interface Science, 408, 200–205. CR - [3]. Fu, Y., Yin, Z., Qin, L., Huang, D., Yi, H., Liu, X., Liu, S., Zhang, M., Li, B., Li, L., Wang, W., Zhou, X., Li, Y., Zeng, G., Lai, C. 2022. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. Journal of Hazardous Materials, 422, 126950. CR - [4]. Ertl, G., Knözinger, H., Weitkamp, J. (Eds.). 1997. Weinheim: VCH. Handbook of heterogeneous catalysis. 2, 427-440. CR - [5]. Colmenares, J. C., Luque, R., Campelo, J. M., Colmenares, F., Karpiński, Z., Romero, A. A. 2009. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials, 2(4): 2228-2258. CR - [6]. Hurley, K. D., Shapley, J. R. 2007. Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology, 41(6): 2044-2049. CR - [7]. Kim, K. H., Ihm, S. K. 2011. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 186(1): 16-34. CR - [8]. Yao, Y., Cai, Y., Lu, F., Wei, F., Wang, X., Wang, S. 2014. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. Journal of Hazardous Materials, 270, 61-70. CR - [9]. Wang, J., Zhang, J., Song, Y., Xu, X., Cai, M., Li, P., Yuan, W., Xiahou, Y. 2023. Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants. Environmental Science and Pollution Research, 30(15): 43950-43961 CR - [10]. Kim, H. S., Kim, H. J., Kim, J. H., Kim, J. H., Kang, S. H., Ryu, J. H., Park, N. K., Yun, D. S., Bae, J. W. 2022. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal. Catalysts, 12(1): 63. CR - [11]. Cao, S., Wang, C. J., Lv, X. J., Chen, Y., Fu, W. F. 2015. A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Applied catalysis B: Environmental, 162, 381-391. CR - [12]. Han, G., Jin, Y. H., Burgess, R. A., Dickenson, N. E., Cao, X. M., Sun, Y. 2017. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. Journal of the American Chemical Society, 139(44): 15584-15587. CR - [13]. Wang, P., Xu, S., Chen, F., Yu, H. 2019. Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chinese Journal of Catalysis, 40(3): 343-351. CR - [14]. Zhang, Y., Jin, Z., Yuan, H., Wang, G., Ma, B. 2018. Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS pn heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 462, 213-225. CR - [15]. Chai, Z., Zeng, T. T., Li, Q., Lu, L. Q., Xiao, W. J., Xu, D. 2016. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. Journal of the American Chemical Society, 138(32): 10128-10131. CR - [16]. Simon, T., Bouchonville, N., Berr, M. J., Vaneski, A., Adrović, A., Volbers, D., Wyrwich, R., Döblinger, M., Susha, A. S., Rogach, A. L., Jackel, F., Stolarczyk, J. K., Feldmann, J. 2014. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nature Materials, 13(11): 1013-1018. CR - [17]. Kim, B., Lee, Y. R., Kim, H. Y., Ahn, W. S. 2018. Adsorption of volatile organic compounds over MIL-125-NH2. Polyhedron, 154, 343-349. CR - [18]. Baughman, G. L., Weber, E. J. 1994. Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environmental Science & Technology, 28(2): 267-276. CR - [19]. Isari, A. A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B. 2018. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549-564. CR - [20]. Basturk, E., Karatas, M. 2015. Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72. CR - [21]. Qin, J., Zhang, Q., Chuang, K. T. 2001. Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts. Applied Catalysis B: Environmental, 29(2): 115-123. CR - [22]. Fujitani, T., Nakamura, J. 2000. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Applied Catalysis A: General, 191(1-2): 111-129. CR - [23]. Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G., Savinov, E. 2003. Heterogeneous photocatalytic degradation of nitrophenols. Journal of Photochemistry and Photobiology A: Chemistry, 155(1-3): 207-214. CR - [24]. Naeem, H., Ajmal, M., Khatoon, F., Siddiq, M., Khan, G. S. 2021. Synthesis of graphene oxide–metal nanoparticle nanocomposites for catalytic reduction of nitrocompounds in aqueous medium. Journal of Taibah University for Science, 15(1), 493-506. CR - [25]. Kamal, T., Asiri, A. M., Ali, N. 2021. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 120019-120028. CR - [26]. Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T., Hemmati, S. 2020. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate polymers, 235, 115966-115973. CR - [27]. Nurwahid, I. H., Dimonti, L. C. C., Dwiatmoko, A. A., Ha, J. M., Yunarti, R. T. 2022. Investigation on SiO2 derived from sugarcane bagasse ash and pumice stone as a catalyst support for silver metal in the 4-nitrophenol reduction reaction. Inorganic Chemistry Communications, 135, 109098-109108. CR - [28]. Pal, J., Deb, M. K., Deshmukh, D. K., Sen, B. K. 2014. Microwave-assisted synthesis of platinum nanoparticles and their catalytic degradation of methyl violet in aqueous solution. Applied Nanoscience, 4, 61-65. CR - [29]. Baghbamidi, S. E., Hassankhani, A., Sanchooli, E., Sadeghzadeh, S.M. 2018. The reduction of 4-nitrophenol and 2-nitroaniline by palladium catalyst based on a KCC-1/IL in aqueous solution. Applied Organometallic Chemistry, 32(4): e4251. CR - [30]. Dayan, S. Copper Nanoparticles Supported on a Schiff base-Fullerene as Catalyst for Reduction of Nitrophenols and Organic Dyes. Celal Bayar University Journal of Science, 16 (3), 285-291. CR - [31]. Dayan, S. Performance improvement of Co3O4@ nHAP hybrid nanomaterial in the UV light-supported degradation of organic pollutants and photovoltaics as counter electrode. Journal of Molecular Structure, 1238, 130390. UR - https://doi.org/10.18466/cbayarfbe.1327271 L1 - https://dergipark.org.tr/en/download/article-file/3263560 ER -