TY - JOUR T1 - On the eigenvalue-separation properties of real tridiagonal matrices AU - Wu, Yan AU - Kohaupt, Ludwig PY - 2023 DA - December DO - 10.33205/cma.1330647 JF - Constructive Mathematical Analysis JO - CMA PB - Tuncer ACAR WT - DergiPark SN - 2651-2939 SP - 210 EP - 221 VL - 6 IS - 4 LA - en AB - In this paper, we give a simple sufficient condition for the eigenvalue-separation properties of real tridiagonal matrices T. This result is much more than the statement that the pertinent eigenvalues are distinct. Its derivation is based on recurrence formulae satisfied by the polynomials made up by the minors of the characteristic polynomial det(xE-T) that are proven to form a Sturm sequence. This is a new result, and it proves the simple spectrum property of a symmetric tridiagonal matrix studied in Grünbaum's paper. Two numerical examples underpin the theoretical findings. The style of the paper is expository in order to address a large readership. KW - Characteristic polynomial KW - Distinct eigenvalues KW - Eigenvalue-separation properties KW - Minors of determinant KW - Sturm sequence KW - Tridiagonal matrix CR - G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989). CR - F. A. Grünbaum: Toeplitz Matrices Commuting with Tridiagonal Matrices, Linear Algebra Appl., 40 (1981), 25–36. CR - M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Foundations of Numerical Analysis and Scientific Computing), B. G. Teubner, Stuttgart, Leipzig, Wiesbaden (2002). CR - F. Stummel, K. Hainer: Introduction to Numerical Analysis, (English Translation by E.R. Dawson of the First Edition of the German Original of 1971,) Scottish Academic Press, Edinburgh (1980). UR - https://doi.org/10.33205/cma.1330647 L1 - https://dergipark.org.tr/en/download/article-file/3277999 ER -