TY - JOUR T1 - Optimization of Inulin Extraction from Chicory Roots and an Ultrafiltration Application to Obtain Purified Inulin and Hydrolyzed Fructooligosaccharides AU - Sağdıç, Osman AU - Sağcan, Nihan AU - Sağcan, Hasan AU - Bozkurt, Fatih AU - Bulut Güneş, Ayşe Nur AU - Fakir, Hüseyin AU - Dertli, Enes PY - 2024 DA - January Y2 - 2023 DO - 10.15832/ankutbd.1338572 JF - Journal of Agricultural Sciences JO - J Agr Sci-Tarim Bili PB - Ankara University WT - DergiPark SN - 1300-7580 SP - 166 EP - 178 VL - 30 IS - 1 LA - en AB - Inulin and fructooligosaccharides (FOS) are prominent functional components in the food industry due to prebiotic and other pharmaceutical properties. Inulin is a storage polysaccharide in various plants. FOS are naturally present in various plants and can be obtained by partial hydrolysis of inulin. In this study, ground and sieved chicory roots (Cichorium intybus L.) were used as starting material for inulin extraction under optimized conditions determined by Response Surface Methodology (RSM) with a Box-Behnken design. Optimum inulin extraction conditions from chicory roots were; temperature of 90 °C, extraction time of 30 min., and liquid-to-solid (LS) ratio of 10:1 mL/g. Inulin extract was further hydrolyzed to FOS by enzymatic or acid treatment, separately. Purification of inulin extract and FOS hydrolysate was performed by ultrafiltration with a 10 kDa membrane under the pressure of 2 bar with continuous stirring. As a result, inulin and FOS were obtained at 90% and 76% purity, respectively. KW - Cichorium intybus KW - fructooligosaccharides KW - Response surface methodology KW - HPLC-RID analysis KW - Acid-enzyme hydrolysis KW - Membrane filtration CR - Albalasmeh A A, Berhe A A & Ghezzehei T A (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 97(2): 253–261. https://doi.org/10.1016/j.carbpol.2013.04.072 CR - Apolinário A C, Lima Damasceno B P G, Macêdo Beltrão N E, Pessoa A, Converti A & Silva J A (2014). Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers 101(1): 368–378. https://doi.org/10.1016/j.carbpol.2013.09.081 CR - Ávila-Fernández Á, Galicia-Lagunas N, Rodríguez-Alegría M E, Olvera C & López-Munguía A (2011). Production of functional oligosaccharides through limited acid hydrolysis of agave fructans. Food Chemistry 129(2): 380–386. https://doi.org/10.1016/j.foodchem.2011.04.088 CR - Balzarini M F, Reinheimer M A, Ciappini M C & Scenna N J (2018). Mathematical model, validation and analysis of the drying treatment on quality attributes of chicory root cubes considering variable properties and shrinkage. Food and Bioproducts Processing 111: 114–128. https://doi.org/10.1016/j.fbp.2018.07.005 CR - Barclay T G, Ginic-Markovic M, Cooper P D & Petrovsky N (2014). Inulin-A versatile polysaccharide with multiple pharmaceutical and food chemical uses. Journal of Excipients and Food Chemicals 1(3): 27-50. https://www.researchgate.net/publication/49597010 CR - Başaran U, Akkbik M, Mut H, Gülümser E, Doğrusöz M Ç & Koçoğlu S (2018). High-Performance liquid chromatography with refractive index detection for the determination of inulin in chicory roots. Analytical Letters 51(1–2): 83–95. https://doi.org/10.1080/00032719.2017.1304952 CR - Beirão-Da-Costa M L, Januario I & Leitão A (2009). Characterisation of inulin from chicory and salsify cultivated in Portugal. Alim. Nutr. Araraquara 16(3): 221-225. https://www.researchgate.net/publication/49599872 CR - Chandra S, Kumar M, Dwivedi P & Arti K (2016). Studies on industrial importance and medicinal value of chicory plant (Cichorium intybus L.). International Journal of Advanced Research 4(1): 1060-1071. CR - Dobre T, Bull C, Stroescu M, Stoica A, Draghici E & Antohe N (2008). Inulin extraction and encapsulation. Buletinul Ştiinţific al Universităţii “Politehnica” Din Timisoara 53: 215-217. http://mt.pub.ro CR - Dominguez A L, Rodrigues L R, Lima N M & Teixeira J A (2014). An overview of the recent developments on fructooligosaccharide production and applications. Food and Bioprocess Technology 7: 324–337. https://doi.org/10.1007/s11947-013-1221-6 CR - El-Kholy W M, Aamer R A & Ali A N A (2020). Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences, 65(1): 59–67. https://doi.org/10.1016/j.aoas.2020.02.002 CR - Esmaeili F, Hashemiravan M, Eshaghi M R & Gandomi H (2021). Optimization of aqueous extraction conditions of inulin from the arctium lappa l. roots using ultrasonic irradiation frequency. Journal of Food Quality. https://doi.org/10.1155/2021/5520996 CR - Figueira G M, Park K J, Brod F P R & Honório S L (2004). Evaluation of desorption isotherms, drying rates and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. Journal of Food Engineering, 63(3): 273–280. https://doi.org/10.1016/j.jfoodeng.2003.06.001 CR - Fu Y P, Li L X, Zhang B Z, Paulsen B S, Yin Z Q, Huang C, Feng B, Chen X F, Jia R R, Song X, Ni X Q, Jing B, Wu F & Zou Y F (2018). Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydrate Polymers, 193: 212–220. https://doi.org/10.1016/j.carbpol.2018.03.065 CR - Grzybowski A, Tiboni M, Passos M, Baldo G R & Fontana D J (2014). Production of fructo-oligosaccharides (FOS) from inulin and applications. In: Fontana D J, Tiboni M & Grzybowski A (Eds.), Cellulose and Other Naturally Occurring Polymers, Brazil, pp. 49-54. CR - Han Y Z, Zhou C C, Xu Y Y, Yao J X, Chi Z, Chi Z M & Liu G L (2017). High-efficient production of fructo-oligosaccharides from inulin by a two-stage bioprocess using an engineered Yarrowia lipolytica strain. Carbohydrate Polymers 173: 592–599. https://doi.org/10.1016/j.carbpol.2017.06.043 CR - Karadag A, Pelvan E, Dogan K, Celik N, Ozturk D, Akalin K & Alasalvar C (2019). Optimisation of green tea polysaccharides by ultrasound-assisted extraction and their in vitro antidiabetic activities. Quality Assurance and Safety of Crops and Foods 11(5): 479–490. https://doi.org/10.3920/QAS2019.1579 CR - Khuenpet K, Fukuoka M, Jittanit W & Sirisansaneeyakul S (2017). Spray drying of inulin component extracted from Jerusalem artichoke tuber powder using conventional and ohmic-ultrasonic heating for extraction process. Journal of Food Engineering 194: 67–78. https://doi.org/10.1016/j.jfoodeng.2016.09.009 CR - Kralj S, Leeflang C, Sierra E I, Kempiński B, Alkan V & Kolkman M (2018). Synthesis of fructooligosaccharides (FosA) and inulin (InuO) by GH68 fructosyltransferases from Bacillus agaradhaerens strain WDG185. Carbohydrate Polymers 179: 350–359. https://doi.org/10.1016/j.carbpol.2017.09.069 CR - Kuhn R C, Mazutti M A, Albertini L B & Filho F M (2014). Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal. New Biotechnology 31(3): 237–241. https://doi.org/10.1016/j.nbt.2014.02.005 CR - Li J, Cheong K L, Zhao J, Hu D J, Chen X Q, Qiao C F, Zhang Q W, Chen Y W & Li S P (2013). Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection. Journal of Chromatography A 1308: 52–57. https://doi.org/10.1016/j.chroma.2013.08.012 CR - Li W, Li J, Chen, T & Chen C (2004). Study on nanofiltration for purifying fructo-oligosaccharides I. Operation modes. Journal of Membrane Science 245(1–2): 123–129. https://doi.org/10.1016/j.memsci.2004.07.021 CR - Lingyun W, Jianhua W, Xiaodong Z, Da T, Yalin Y, Chenggang C, Tianhua F & Fan Z (2007). Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers. Journal of Food Engineering 79(3): 1087–1093. https://doi.org/10.1016/j.jfoodeng.2006.03.028 CR - Lopes S M S, Krausová G, Carneiro J W P, Gonçalves J E, Gonçalves R A C & Oliveira A J B (2017). A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chemistry 225: 154–161. https://doi.org/10.1016/j.foodchem.2016.12.100 CR - Mavumengwana V B (2004). Isolation, purification and characterization of inulin and fructooligosaccharides from chicorium intybus and inulinase from aspergillus niger. M.Sc. Thesis, Rhodes University, South Africa Muñiz-Márquez D B, Teixeira J A, Mussatto S I, Contreras-Esquivel J C, Rodríguez-Herrera R & Aguilar C N (2019). Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT 102: 75–79. https://doi.org/10.1016/j.lwt.2018.12.020 CR - Murtiningrum S P, Suryani A & Manguwidjaja D (2020). Determination of ultrafiltration resistance using series resistance model in inulin purification from red fruit (Pandanus conoideus L.) pedicel extract. IOP Conference Series: Earth and Environmental Science 443: 1. https://doi.org/10.1088/1755-1315/443/1/012086 CR - Nobre C, Filho E G A, Fernandes F A N, Brito E S, Rodrigues S, Teixeira J A & Rodrigues L R (2018). Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT 89: 58–64. https://doi.org/10.1016/j.lwt.2017.10.015 CR - Noori W O (2014). Selection of Optimal Conditions of Inulin Extraction from Jerusalem Artichoke (Helianthus Tuberosus L.) Tubers by using Ultrasonic Water Bath. Journal of Engineering 20: 110-119. https://www.researchgate.net/publication/328278566 CR - Öztürk B (2016). A rising star prebiotic dietary fiber: inulin and recent applications in meat products. Journal of Food and Health Science 3(1): 12–20. https://doi.org/10.3153/jfhs17002 CR - Perović J, Tumbas Šaponjac V, Kojić J, Krulj J, Moreno D A, García-Viguera C, Bodroža-Solarov M & Ilić N (2021). Chicory (Cichorium intybus L.) as a food ingredient – Nutritional composition, bioactivity, safety, and health claims: A review. Food Chemistry 336. https://doi.org/10.1016/j.foodchem.2020.127676 CR - Qing Q, Li H, Kumar R & Wyman C E (2013). Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, John Wiley and Sons, pp. 391–415. https://doi.org/10.1002/9780470975831.ch19 CR - Redondo-Cuenca A, Herrera-Vázquez S E, Condezo-Hoyos L, Gómez-Ordóñez E & Rupérez P (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products 170. https://doi.org/10.1016/j.indcrop.2021.113726 CR - Ricca E, Calabrò V, Curcio S & Iorio G. (2009). Optimization of inulin hydrolysis by inulinase accounting for enzyme time- and temperature-dependent deactivation. Biochemical Engineering Journal 48(1): 81–86. https://doi.org/10.1016/j.bej.2009.08.009 CR - Sarchami T & Rehmann L (2014). Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass and Bioenergy 69: 175–182. https://doi.org/10.1016/j.biombioe.2014.07.018 CR - Singh R S & Singh T (2022a). Fructooligosaccharides production from inulin by immobilized endoinulinase on 3-aminopropyltriethoxysilane functionalized halloysite nanoclay. Catalysis Letters 152(7): 1927–1949. https://doi.org/10.1007/s10562-021-03803-5 CR - Singh R S & Singh T (2022b). Glutaraldehyde functionalization of halloysite nanoclay enhances immobilization efficacy of endoinulinase for fructooligosaccharides production from inulin. Food Chemistry 381. https://doi.org/10.1016/j.foodchem.2022.132253 CR - Singh R S, Singh T, Hassan M & Kennedy J F (2020). Updates on inulinases: Structural aspects and biotechnological applications. International Journal of Biological Macromolecules 164: 193–210. https://doi.org/10.1016/j.ijbiomac.2020.07.078 CR - Singh R S, Singh T & Kennedy J F (2020). Enzymatic synthesis of fructooligosaccharides from inulin in a batch system. Carbohydrate Polymer Technologies and Applications 1. https://doi.org/10.1016/j.carpta.2020.100009 CR - Singh R S, Singh T & Kennedy J F (2021). Understanding the interactive influence of hydrolytic conditions on biocatalytic production of fructooligosaccharides from inulin. International Journal of Biological Macromolecules 166: 9–17. https://doi.org/10.1016/j.ijbiomac.2020.11.171 CR - Singh R S, Singh T & Pandey A (2020). Fungal endoinulinase production from raw Asparagus inulin for the production of fructooligosaccharides. Bioresource Technology Reports 10. https://doi.org/10.1016/j.biteb.2020.100417 CR - Stökle K, Jung D & Kruse A (2023). Acid-assisted extraction and hydrolysis of inulin from chicory roots to obtain fructose-enriched extracts. Biomass Conversion and Biorefinery 13(1): 159–170. https://doi.org/10.1007/s13399-020-01108-y CR - Tewari S, Ramalakshmi K, Methre L & Rao L J M (2014). Microwave-assisted extraction of inulin from chicory roots using response surface methodology. Journal of Nutrition & Food Sciences, 05(01). https://doi.org/10.4172/2155-9600.1000342 CR - Yi H, Zhang L, Hua C, Sun K & Zhang L (2010). Extraction and enzymatic hydrolysis of inulin from Jerusalem artichoke and their effects on textural and sensorial characteristics of yogurt. Food and Bioprocess Technology 3(2): 315–319. https://doi.org/10.1007/s11947-009-0247-2 CR - Zhang X, Zhu X, Shi X, Hou Y & Yi Y (2022). extraction and purification of inulin from jerusalem artichoke with response surface method and ıon exchange resins. ACS Omega 7(14): 12048–12055. https://doi.org/10.1021/acsomega.2c00302 CR - Zhu Z, Luo X, Yin F, Li S & He J (2018). Clarification of jerusalem artichoke extract using ultra-filtration: effect of membrane pore size and operation conditions. Food and Bioprocess Technology 11(4): 864–873. https://doi.org/10.1007/s11947-018-2054-0 UR - https://doi.org/10.15832/ankutbd.1338572 L1 - https://dergipark.org.tr/en/download/article-file/3311754 ER -