TY - JOUR T1 - Investigating the Relationship between Urbanization and Air Pollution Using Google Earth Engine Platform: A Case Study of Istanbul AU - Acar, Uğur AU - Yasan, Duygu AU - Yılmaz, Osman Salih PY - 2024 DA - September DO - 10.30897/ijegeo.1339560 JF - International Journal of Environment and Geoinformatics JO - IJEGEO PB - Istanbul University WT - DergiPark SN - 2148-9173 SP - 130 EP - 146 VL - 11 IS - 3 LA - en AB - Rapid population growth in megacities such as Istanbul has led to various effects, such as industrialization, urbanization, loss of green areas, increasing vehicle traffic, and higher consumption of fossil fuels. These reasons, along with many other environmental factors, contribute to the rise of air pollution in urban life. This study aimed to examine the relationship between urbanization and air pollution in Istanbul. For this purpose, land cover maps covering Istanbul province were produced using Landsat-5 (TM), Landsat-8 (OLI), and Sentinel-2 (MSI) images for the years 1996 to 2021 at three-year intervals on the Google Earth Engine platform. Land cover for classification purposes was divided into five different classes: forest, water surface, urban area, and bare land, and classified using a random forest machine learning algorithm. To examine the impact of this urban area growth on air pollution, in the second step of the study, the column number density values of Sentinel 5P (TROPOMI) data for SO2, NO2, CO, and O3 gases for 2019, 2020, and 2021 were analyzed. The averages of the data from 39 air pollution monitoring stations across Istanbul were also examined. According to this classification, the urban area expanded from 491 km2 in 1996 to 1222 km2 by 2021. Considering the total surface area of Istanbul province, the urban area, which was 9% in 1996, reached 23% by 2021. The TROPOMI values were calculated as follows: the average column number density values for SO2, NO2, CO, and O3 were 0.0003538 mol/m², 0.0339514 mol/m², 0.0000984 mol/m², and 0.1453515 mol/m², respectively. Similarly, the gas concentrations of SO2, NO2, CO, and O3 measured from the ground stations were calculated as 6.603 µ/m3, 786,815 µ/m3, 43.763 µ/m3 and 45.773 µ/m3, respectively. Correlations between urbanization and TROPOMI values revealed a positive correlation of 0.39, 0.02, and 0.80 for SO2, NO2, and CO gases, while a negative correlation of 0.25 was found for O3 gas. The study also examined correlations between TROPOMI and ground station measurements, resulting in positive correlations of 0.55, 0.66, and 0.16 for SO2, NO2, and CO gases, respectively, while a negative correlation of 0.05 was found for O3 gas. Based on these findings, among the air pollutants studied both through TROPOMI and ground station data, the highest correlation was observed for CO gas. KW - Istanbul KW - TROPOMI KW - Sentinel 5P KW - Google Earth Engine KW - Air pollution KW - Random Forest CR - Achakulwisut, P., Brauer, M., Hystad, P., Anenberg, S. C. (2019). Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO 2 pollution: estimates from global datasets. The Lancet Planetary Health, 3(4), e166–e178. doi.org/10.1016/S2542-5196(19)30046-4 CR - Aghlmand, M., Kalkan, K., Onur, M. İ., Öztürk, G., Ulutak, E. (2021). Google Earth Engine ile Arazi Kullanımı Haritalarının Üretimi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 38–47. doi.org/10.28948/ngumuh.795977 CR - Alqurashi, A. F., Kumar, L. (2013). Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change: A Review. Advances in Remote Sensing, 02(02), 193–204. doi.org/10.4236/ars.2013.22022 CR - Arslan, O., Akyürek, Ö. (2018). Spatial Modelling of Air Pollution from PM10 and SO2 concentrations during Winter Season in Marmara Region (2013-2014). International Journal of Environment and Geoinformatics, 5(1), 1-16. doi.org/10.30897/ ijegeo.412391 CR - Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope III, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115(38), 9592–9597. doi.org/10.1073/pnas.1803222115 CR - Cakmak, N., Yilmaz, O. S., Sanli, F. B. (2023). Spatio-temporal Analysis of Pollutant Gases using Sentinel-5P TROPOMI Data on the Google Earth Engine during the COVID-19 Pandemic in the Marmara Region , Türkiye. E-ZBORNIK, 13(25), 1–14. doi.org/10.47960/2232-9080.2023.25.13.1 CR - Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B. (2016). Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 185, 142–154. doi.org/10.1016/ j.rse.2016.02.016 CR - Engel-Cox, J. A., Hoff, R. M., Haymet, A. D. J. (2004). Recommendations on the use of satellite remote-sensing data for urban air quality. Journal of the Air and Waste Management Association, 54(11), 1360–1371. doi.org/10.1080/10473289.2004.10471005 CR - Engin Duran, H., Pelin Özkan, S. (2015). Trade openness, Urban concentration and city-size growth in Turkey. Regional Science Inquiry, 7(1), 35–46. CR - Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhoffer, K. J., Pataki, D. E., Peters, D. P. C. (2008). The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. In Frontiers in Ecology and the Environment (Vol. 6, Issue 5, pp. 264–272). doi.org/10.1890/070147 CR - Guo, X., Zhang, Z., Cai, Z., Wang, L., Gu, Z., Xu, Y., Zhao, J. (2022). Analysis of the Spatial–Temporal Distribution Characteristics of NO2 and Their Influencing Factors in the Yangtze River Delta Based on Sentinel-5P Satellite Data. Atmosphere, 13(11). doi.org/10.3390/atmos13111923 CR - Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880–5892. doi.org/10.1016/j.atmosenv.2006.03.016 CR - He, Y., Wang, C., Chen, F., Jia, H., Liang, D., Yang, A. (2019). Feature Comparison and Optimization for 30-M Winter Wheat Mapping Based on Landsat-8 and Sentinel-2 Data Using Random Forest Algorithm. Remote Sensing, 11(5), 535. doi.org/10.3390/rs11050535 CR - Huang, G., Sun, K. (2020). Non-negligible impacts of clean air regulations on the reduction of tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and TROPOMI. Science of the Total Environment, 745, 141023. doi.org/10.1016/j.scitotenv.2020.141023 CR - Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C. K., Kim, S. (2021). Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environmental Pollution, 288(2), 117711. doi.org/10.1016/j.envpol.2021.117711 CR - Kaplan, G., Yigit Avdan, Z. (2020). Space-Borne Air Pollution Observation From Sentinel-5P Tropomi: Relationship Between Pollutants, Geographical and Demographic Data. International Journal of Engineering and Geosciences, 2, 130–137. doi.org/10.26833/ijeg.644089 CR - Kumar, L., Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. doi.org/10.3390/rs10101509 CR - Kural, G., Balkıs, N. Ç., Aksu, A. (2018). Source identification of Polycyclic Aromatic Hydrocarbons (PAHs) in the urban environment of İstanbul. International Journal of Environment and Geoinformatics, 5(1), 53-67. Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. doi.org/10.1093/cvr/cvaa025 Liu, D., Chen, N., Zhang, X., Wang, C., Du, W. (2020). Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 337–351. CR - Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., Wang, S. (2018). High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 209(February), 227–239. doi.org/10.1016/j.rse.2018.02.055 CR - Magro, C., Nunes, L., Gonçalves, O., Neng, N., Nogueira, J., Rego, F., Vieira, P. (2021). Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire, 4(2), 25. doi.org/10.3390/fire4020025 CR - Martin, R. V. (2008). Satellite remote sensing of surface air quality. Atmospheric Environment, 42(34), 7823–7843. CR - Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., Tatem, A. J., Trianni, G. (2015). Multitemporal settlement and population mapping from landsatusing google earth engine. International Journal of Applied Earth Observation and Geoinformation, 35(PB), 199–208. doi.org/10.1016/j.jag.2014.09.005 CR - Potts, D. A., Marais, E. A., Boesch, H., Pope, R. J., Lee, J., Drysdale, W., Chipperfield, M. P., Kerridge, B., Siddans, R., Moore, D. P., Remedios, J. (2021). Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and GEOS-Chem. Environmental Research Letters, 16(5). doi.org/10.1088/1748-9326/abde5d CR - Raja, R. A. A., Anand, V., Kumar, A. S., Maithani, S., Kumar, V. A. (2013). Wavelet Based Post Classification Change Detection Technique for Urban Growth Monitoring. Journal of the Indian Society of Remote Sensing, 41(1), 35–43. doi.org/10.1007/s12524-011-0199-7 CR - Saadat, H., Adamowski, J., Bonnell, R., Sharifi, F., Namdar, M., Ale-Ebrahim, S. (2011). Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 608–619. doi.org/10.1016/j.isprsjprs.2011.04.001 CR - Sünsüli, M., Kalkan, K. (2022). Sentinel-5P uydu görüntüleri ile azot dioksit (NO2) kirliliğinin izlenmesi. Türkiye Uzaktan Algılama Dergisi, 4(1), 1–6. CR - Tømmervik, H., Johansen, B. E., Pedersen, J. P. (1995). Monitoring the effects of air pollution on terrestrial ecosystems in Varanger (Norway) and Nikel-Pechenga (Russia) using remote sensing. Science of the Total Environment, 160, 753–767. CR - Tyagi, S., Garg, N., Paudel, R. (2014). Environmental Degradation: Causes and Consequences. European Researcher, 81(8–2), 1491. doi.org/10.13187/er.2014.81.1491 CR - Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122(June), 104528. doi.org/10.1016/j.envsoft.2019.104528 CR - Wang, S., Hao, J. (2012). Air quality management in China: Issues, challenges, and options. Journal of Environmental Sciences, 24(1), 2–13. doi.org/10.1016/S1001-0742(11)60724-9 CR - Wong, B. A., Thomas, C., Halpin, P. (2019). Automating offshore infrastructure extractions using synthetic aperture radar & Google Earth Engine. Remote Sensing of Environment, 233(November 2018), 111412. doi.org/10.1016/j.rse.2019.111412 CR - Yilmaz, O. S., Acar, U., Sanli, F. B., Gulgen, F., Ates, A. M. (2023). Mapping burn severity and monitoring CO content in Türkiye’s 2021 Wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform. Earth Science Informatics, 16(1), 221–240. doi.org/10.1007/s12145-023-00933-9 CR - Yuan, F., Sawaya, K. E., Loeffelholz, B. C., Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98(2–3), 317–328. doi.org/10.1016/j.rse.2005.08.006 CR - URL-1. https://data.tuik.gov.tr (25.04.2022) CR - URL-2 https://www.tripreport.com/cities/ (25.04.2022) CR - URL-3 https://web.archive.org (25.04.2022) CR - Ülker, D., Bayırhan, İ., Mersin, K., Gazioğlu, C. (2021). A comparative CO2 emissions analysis and mitigation strategies of short-sea shipping and road transport in the Marmara Region. Carbon Management, 12(1), 1-12. UR - https://doi.org/10.30897/ijegeo.1339560 L1 - https://dergipark.org.tr/en/download/article-file/3316019 ER -