TY - JOUR T1 - İnsan Eylemlerini Algılama, Önemi ve Nöral Temelleri TT - Visual Perception of Human Actions and Attention AU - Ürgen, Burcu A. AU - Nizamoğlu, Hilal PY - 2023 DA - September Y2 - 2023 DO - 10.31682/ayna.1343796 JF - AYNA Klinik Psikoloji Dergisi PB - ODTÜ- AYNA Klinik Psikoloji Destek Ünitesi WT - DergiPark SN - 2148-4376 SP - 636 EP - 654 VL - 10 IS - 3 LA - tr AB - İnsanlar dahil olmak üzere tüm hayvanların sahip olduğu temel bir beceri, çevredeki diğer canlıların hareket ve eylemlerini algılama ve tanıma yeteneğidir. Günümüze kadar yapılan nörofizyolojik ve nörogörüntüleme çalışmaları, çevremizdeki diğer canlıların eylemlerini algılamak için önemli ve gerekli olan beyin bölgelerini büyük ölçüde tanımlamıştır. Ancak bu çalışmaların büyük bir çoğunluğu, eylemlerin algılanmasını seçici dikkat görevleri altında incelemiştir. Başka bir deyişle, bu çalışmalarda insan eylemlerini gösteren uyaranlar dikkatin odağı olmuş ve katılımcılar izledikleri hareket ve eylemlerle ilgili görevler yapmışlardır. Ancak günlük yaşamda, dikkatimizin odağı olmayan insan hareketleri de sosyal ya da hayati önemlerinden dolayı dikkatimizi çekebilirler ve seçici dikkat dışında otomatik olarak algılanabilirler. Bu derleme makalede, insan hareketlerinin dikkatin odağı olmadığı durumlarda beyin tarafından nasıl işlendiğini inceleyen çalışmalar ele alınmış ve alandaki yeni bilimsel sorulara ışık tutulmuştur. Bu sorular arasında, insan hareketlerinin dikkatin odağı olmadığında nasıl işleneceğinin zamansal boyutları, farklı insan hareketlerinin farklı dikkat çekme kapasitelerine sahip olup olmadıkları, ekolojik geçerlilikleri yüksek doğal düzeneklerde yapılan insan hareketi çalışmalarının laboratuvar ortamında yapılan çalışmalardan farklı sonuçlar doğurup doğurmadığı ve insan hareketlerini algılamada güçlük yaşayan klinik popülasyonlarda dikkat süreçleri de dikkate alındığında ne gibi tablolar çıkacağı soruları yer almaktadır. KW - görsel algı KW - biyolojik hareket algısı KW - dikkat KW - dikkat yükü KW - nörogörüntüleme N2 - A fundamental skill possessed by all animals, including humans, is the ability to perceive and recognize the movements and actions of other living beings in their environment. Neurophysiological and neuroimaging studies conducted to date have largely identified the brain regions that are important and necessary for perceiving the actions of other beings in our surroundings. However, the majority of these studies have examined the perception of actions under selective attention tasks. In other words, the stimuli depicting human actions were the focus of attention, and participants performed tasks related to the movements and actions they observed. However, in daily life, human movements that are not the focus of our attention can still attract our attention due to their social or vital significance and can be automatically perceived outside of selective attention. This review article discusses studies that examine how the brain processes human movements in situations where they are not the focus of attention, shedding light on new scientific questions in the field. These questions include the temporal dimensions of how human actions will be processed when they are not the focus of attention, whether different human actions have different attention-capturing capacities, whether human action studies conducted in natural settings with high ecological validity yield different results from studies conducted in the laboratory environment, and how clinical populations who have impaired biological motion perception skills behave when attention processes are also taken into account. CR - Abdollahi, R. O., Jastorff, J. ve Orban, G. A. (2013). Common and segregated processing of observed actions in human SPL. Cerebral cortex, 23(11), 2734-2753. https://doi.org/10.1093/cercor/bhs264 CR - Arnstein, D., Cui, F., Keysers, C., Maurits, N. M. ve Gazzola, V. (2011). μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31(40), 14243-14249. https://doi.org/10.1523/JNEUROSCI.0963-11.2011 CR - Blake, R. ve Shiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58, 47-73. https://doi.org/10.1146/annurev.psych.57.102904.190152 CR - Bruckmaier, M., Tachtsidis, I., Phan, P. ve Lavie, N. (2020). Attention and capacity limits in perception: A cellular metabolism account. Journal of Neuroscience, 40(35), 6801-6811. https://doi.org/10.1523/jneurosci.2368-19.2020 CR - Caspers, S., Zilles, K., Laird, A. R. ve Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148-1167. https://doi.org/10.1016/j.neuroimage.2009.12.112 CR - Corbo, D. ve Orban, G. A. (2017). Observing others speak or sing activates Spt and neighboring parietal cortex. Journal of Cognitive Neuroscience, 29(6), 1002-1021. https://doi.org/10.1162/jocn_a_01103 CR - Çalışkan Nizamoğlu, H. (2022). Neural Underpinnings of Biological Motion Perception Under Attentional Load [Yayımlanmamış yüksek lisans tezi]. İhsan Doğramacı Bilkent Üniversitesi. CR - Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T. T., Darsaud, A., Vandewalle, G., Albouy, G., Salmon, E., Peters, F., Schmidt, C., Schabus, M., Gais, S., Degueldre, C., Phillips, C., Luxen, A., Ansseau, M., Maquet, P. ve Schwartz, S. (2009). Abnormal neural filtering of irrelevant visual information in depression. Journal of Neuroscience, 29(5), 1395-1403. https://doi.org/10.1523/jneurosci.3341-08.2009 CR - Federici, A., Parma, V., Vicovaro, M., Radassao, L., Casartelli, L. ve Ronconi, L. (2020). Anomalous perception of biological motion in autism: a conceptual review and meta-analysis. Scientific Reports, 10(1), 4576. https://doi.org/10.1038/s41598-020-61252-3 CR - Ferri, S., Rizzolatti, G. ve Orban, G. A. (2015). The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Human Brain Mapping, 36(10), 3845-3866. https://doi.org/10.1002/hbm.22882 CR - Giese, M. A. ve Rizzolatti, G. (2015). Neural and computational mechanisms of action processing: interaction between visual and motor representations. Neuron, 88(1), 167-180. https://doi.org/10.1016/j.neuron.2015.09.040 CR - Goldstein, E. B. ve Brockmole, J. R. (2016). Sensation and perception (10th ed.). Cengage Learning. CR - Grossman, E. D. ve Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35(6), 1167-1175. https://doi.org/10.1016/s0896-6273(02)00897-8 CR - Hirai, M., Fukushima, H. ve Hiraki, K. (2003). An event-related potentials study of biological motion perception in humans. Neuroscience Letters, 344(1), 41-44. https://doi.org/10.1016/s0304-3940(03)00413-0 CR - Jastorff, J., Begliomini, C., Fabbri-Destro, M., Rizzolatti, G. ve Orban, G. A. (2010). Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. Journal of Neurophysiology, 104(1), 128-140. https://doi.org/10.1152/jn.00254.2010 CR - Jastorff, J., Abdollahi, R. O., Fasano, F. ve Orban, G. A. (2016). Seeing biological actions in 3 D: An f MRI study. Human Brain Mapping, 37(1), 203-219. https://doi.org/10.1002/hbm.23020 CR - Jensen, O. ve Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186 CR - Jensen, O., Bonnefond, M. ve VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206. https://doi.org/10.1016/j.tics.2012.03.002 CR - Kaletsch, M., Pilgramm, S., Bischoff, M., Kindermann, S., Sauerbier, I., Stark, R., Lis, S., Gallhofer, B., Sammer, G., Zentgraf, K., Munzert, J. ve Lorey, B. (2014). Major depressive disorder alters perception of emotional body movements. Frontiers in Psychiatry, 5, 4. https://doi.org/10.3389/fpsyt.2014.00004 CR - Krakowski, A. I., Ross, L. A., Snyder, A. C., Sehatpour, P., Kelly, S. P. ve Foxe, J. J. (2011). The neurophysiology of human biological motion processing: a high-density electrical mapping study. NeuroImage, 56(1), 373-383. https://doi.org/10.1016/j.neuroimage.2011.01.058 CR - Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451. https://doi.org/10.1037/0096-1523.21.3.451 CR - Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82. https://doi.org/10.1016/j.tics.2004.12.004 CR - Lingnau, A. ve Downing, P. E. (2015). The lateral occipitotemporal cortex in action. Trends in Cognitive Sciences, 19(5), 268-277. https://doi.org/10.1016/j.tics.2015.03.006 CR - Loi, F., Vaidya, J. G. ve Paradiso, S. (2013). Recognition of emotion from body language among patients with unipolar depression. Psychiatry Research 209, 40–49. https://doi.org/10.1016/j.psychres.2013.03.001 CR - Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., Rizzolatti, G. ve Orban, G. A. (2011). Action observation circuits in the macaque monkey cortex. Journal of Neuroscience, 31(10), 3743-3756. https://doi.org/10.1523/jneurosci.4803-10.2011 CR - Nizamoğlu, H. ve Ürgen, B. A. (2023). Neural processing of bottom up perception of biological motion under attentional load. bioRxiv, 2023-03. https://doi.org/10.1101/2023.03.14.532555 CR - Oberman, L. M., Pineda, J. A. ve Ramachandran, V. S. (2007). The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2(1), 62-66. https://doi.org/10.1093/scan/nsl022 CR - Okruszek, Ł. ve Pilecka, I. (2017). Biological motion processing in schizophrenia–Systematic review and meta-analysis. Schizophrenia Research, 190, 3-10. https://doi.org/10.1016/j.schres.2017.03.013 CR - Oosterhof, N. N., Tipper, S. P. ve Downing, P. E. (2013). Crossmodal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences, 17(7), 311-318. https://doi.org/10.1016/j.tics.2013.04.012 CR - Orban, G. A., Lanzilotto, M. ve Bonini, L. (2021). From observed action identity to social affordances. Trends in Cognitive Sciences, 25(6), 493-505. https://doi.org/10.1016/j.tics.2021.02.012 CR - Peelen, M. V. ve Downing, P. E. (2007). The neural basis of visual body perception. Nature Reviews Neuroscience, 8(8), 636-648. https://doi.org/10.1038/nrn2195 CR - Phillipou, A., Rossell, S. L., Gurvich, C., Castle, D. J., Troje, N. F. ve Abel, L. A. (2016). Body image in anorexia nervosa: Body size estimation utilising a biological motion task and eyetracking. European Eating Disorders Review, 24(2), 131-138. https://doi.org/10.1002/erv.2423 CR - Press, C., Cook, J., Blakemore, S. J. ve Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 2792-2800. https://doi.org/10.1523/jneurosci.1595-10.2011 CR - Rauss, K. S., Pourtois, G., Vuilleumier, P. ve Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30(5), 1723-1733. https://doi.org/10.1002/hbm.20636 CR - Rauss, K., Pourtois, G., Vuilleumier, P. ve Schwartz, S. (2012). Effects of attentional load on early visual processing depend on stimulus timing. Human Brain Mapping, 33(1), 63-74. https://doi.org/10.1002/hbm.21193 CR - Rees, G., Frith, C. D. ve Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278(5343), 1616-1619. https://doi.org/10.1126/science.278.5343.1616 CR - Saygın, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130(9), 2452-2461. https://doi.org/10.1093/brain/awm162 CR - Saygın, A. P. ve Sereno, M. I. (2008). Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex. Cerebral Cortex, 18(9), 2158-2168. https://doi.org/10.1093/cercor/bhm242 CR - Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J. ve Driver, J. (2005). Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15(6), 770-786. https://doi.org/10.1093/cercor/bhh178 CR - Sitnikova, T., Kuperberg, G. ve Holcomb, P. J. (2003). Semantic integration in videos of real–world events: An electrophysiological investigation. Psychophysiology, 40(1), 160-164. https://doi.org/10.1111/1469-8986.00016 CR - Sitnikova, T., Holcomb, P. J., Kiyonaga, K. A. ve Kuperberg, G. R. (2008). Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. Journal of Cognitive Neuroscience, 20(11), 2037-2057. https://doi.org/10.1162/jocn.2008.20143 CR - Tarhan, L. ve Konkle, T. (2020). Sociality and interaction envelope organize visual action representations. Nature Communications, 11(1), 3002. https://doi.org/10.1038/s41467-020-16846-w CR - Thornton, I. M. ve Vuong, Q. C. (2004). Incidental processing of biological motion. Current Biology, 14(12), 1084-1089. https://doi.org/10.1016/j.cub.2004.06.025 CR - Tucciarelli, R., Wurm, M., Baccolo, E. ve Lingnau, A. (2019). The representational space of observed actions. Elife, 8, e47686. https://doi.org/10.7554/elife.47686 CR - Ürgen, B. A., Plank, M., Ishiguro, H., Poizner, H. ve Saygın, A. P. (2013). EEG theta and Mu oscillations during perception of human and robot actions. Frontiers in neurorobotics, 7, 19. https://doi.org/10.3389/fnbot.2013.00019 CR - Ürgen, B. A., Kutas, M. ve Saygın, A. P. (2018). Uncanny valley as a window into predictive processing in the social brain. Neuropsychologia, 114, 181-185. https://doi.org/10.1016/j.neuropsychologia.2018.04.027 CR - Ürgen, B. A., Pehlivan, S. ve Saygın, A. P. (2019). Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling. Neuropsychologia, 127, 35-47. https://doi.org/10.1016/j.neuropsychologia.2019.02.006 CR - Ürgen, B. A. ve Saygın, A. P. (2020). Predictive processing account of action perception: Evidence from effective connectivity in the action observation network. Cortex, 128, 132-142. https://doi.org/10.1016/j.cortex.2020.03.014 CR - Ürgen, B. A. ve Orban, G. A. (2021). The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. NeuroImage, 237, 118220. https://doi.org/10.1016/j.neuroimage.2021.118220 CR - Van de Cruys, S., Schouten, B. ve Wagemans, J. (2013). An anxiety-induced bias in the perception of a bistable point-light walker. Acta Psychologica, 144(3), 548-553. https://doi.org/10.1016/j.actpsy.2013.09.010 CR - Vanrie, J., Dekeyser, M. ve Verfaillie, K. (2004). Bistability and biasing effects in the perception of ambiguous point-light walkers. Perception, 33(5), 547-560. https://doi.org/10.1068/p5004 CR - Vaskinn, A., Lagerberg, T. V., Bjella, T. D., Simonsen, C., Andreassen, O. A., Ueland, T. ve Sundet, K. (2017). Impairment in emotion perception from body movements in individuals with bipolar I and bipolar II disorder is associated with functional capacity. International Journal of Bipolar Disorders, 5, 1-9. https://doi.org/10.1186/s40345-017-0083-7 CR - Vocks, S., Legenbauer, T., Rüddel, H. ve Troje, N. F. (2007). Static and dynamic body image in bulimia nervosa: mental representation of body dimensions and biological motion patterns. International Journal of Eating Disorders, 40(1), 59-66. https://doi.org/10.1002/eat.20336 CR - Vogeley, K. (2017). Two social brains: neural mechanisms of intersubjectivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160245. https://doi.org/10.1098/rstb.2016.0245 CR - Zucker, N., Moskovich, A., Bulik, C. M., Merwin, R., Gaddis, K., Losh, M., Piven, J., Wagner, H. R. ve LaBar, K. S. (2013). Perception of affect in biological motion cues in anorexia nervosa. International Journal of Eating Disorders, 46(1), 12-22. https://doi.org/10.1002/eat.22062 UR - https://doi.org/10.31682/ayna.1343796 L1 - https://dergipark.org.tr/en/download/article-file/3335231 ER -