TY - JOUR T1 - Utilization of food waste in production of bacterial cellulose TT - Gıda atıklarının bakteriyel selüloz üretiminde kullanımı AU - Uyarcan, Müge AU - Özkaya, Pelin AU - Dağbağlı, Seval PY - 2024 DA - January Y2 - 2023 DO - 10.20289/zfdergi.1350359 JF - Journal of Agriculture Faculty of Ege University PB - Ege University WT - DergiPark SN - 1018-8851 SP - 737 EP - 749 VL - 60 IS - 4 LA - en AB - Cellulose is defined as a polymer that exists in the cell walls of plant tissues and is widely used in many industrial fields. However, the recent threat of deforestation has led researchers to find alternative wood sources for cellulose production. For this reason, literature studies have focused on certain types of bacteria known to be capable of producing cellulose, such as Acetobacter, Gluconobacter, Alcaligenes, etc. It is stated that cellulose of plant origin and bacterial origin have a similar structure. Bacterial cellulose possesses a big economic and commercial potential depending on the purpose and the production method and is generally used in food applications as a fat substitute, rheology modifier, immobilization material for probiotics and enzymes, stabilizer of pickering emulsions, component of food coatings and green packaging film. Recently, it has become more prominent to use food waste as production inputs, such as beet and sugar cane molasses, fruit waste, dairy industry waste, etc. So, the utilization of industrial by-products, agro-forestry, and food industry residues as carbon sources has been providing significant advantages, such as increasing yield and reducing cost. The objective of this study was to present a general look related to bacterial cellulose production in combination with the use of food waste and future trends. KW - Bacterial cellulose KW - cellulose KW - food waste KW - food industry N2 - Selüloz, bitki dokularının hücre duvarında bulunan ve endüstrinin birçok alanında yaygın olarak kullanılan bir polimer olarak tanımlanmaktadır. Ancak son zamanlarda ormanların yok olma tehlikesiyle karşı karşıya kalması araştırmacıları selüloz üretimi için odun yerine alternatif kaynaklar bulmaya yönlendirmiştir. Bu nedenle literatür çalışmaları selüloz üretebildikleri bilinen Acetobacter, Gluconobacter, Alcaligenes, vb. gibi belirli bakteri türlerine odaklanmıştır. Bitki kaynaklı ve bakteriyel kaynaklı selülozun benzer yapıya sahip olduğu ifade edilmektedir. Bakteriyel selüloz, üretim amacına ve yöntemine bağlı olarak büyük bir ekonomik ve ticari potansiyele sahiptir ve gıda uygulamalarında genellikle yağ ikame maddesi, reoloji düzenleyici, probiyotik ve enzimler için immobilizasyon materyali, pickering emülsiyonlarının stabilizatörü, gıda kaplamaları ve yeşil ambalaj üretiminde film bileşeni olarak kullanılmaktadır. Son zamanlarda pancar ve şeker kamışı melası, meyve atıkları, süt sanayi atıkları gibi gıda atıklarının üretim girdisi olarak kullanılması ön plana çıkmıştır. Bu nedenle, endüstriyel yan ürünlerin, tarım-orman ve gıda endüstrisi atıklarının karbon kaynağı olarak kullanılması, verimi artırmak ve maliyeti düşürmek gibi önemli avantajlar sağlamaktadır. Bu çalışmada bakteriyel selüloz üretiminde gıda atıklarının kullanımı ve gelecekteki eğilimler ile ilgili bilgiler derlenmiştir CR - Agüero, A., D. Lascano, J. Ivorra-Martineza, J. Gomez-Caturlaa, M.P. Arrieta & R. Balart, 2023. Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil. Industrial Crops & Products, 202: 116971. https://doi.org/10.1016/j.indcrop.2023.116971 CR - Akintunde, M.O., BC. Adebayo-Tayo, M.M. Ishola, A. Zamani & I.S. Horvath, 2023. Bacterial cellulose production from agricultural residues by two Komagateibacter sp. strains. Bioengineered, 13 (4): 10010-10025. https://doi.org/10.1080/21655979.2022.2062970 CR - Akoğlu, A., A.G. Karahan, M.L. Çakmakçı & İ. Çakır, 2010. Bakterı̇yel selülozun özellı̇klerı̇ ve gıda sanayı̇sı̇nde kullanımı. Gıda, 35 (2): 127-134. CR - Algar, I., S.C.M. Fernandes, G. Mondragon, C. Castro, C. Garcia-Astrain, N. Gabilondo, A. Retegi & A. Eceiza, 2015. Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 132 (1): 1-8. https://doi.org/10.1002/app.41237 CR - Andriani, D., A.Y. Apriana & M. Karina, 2020. The optimization of bacterial cellulose production and its applications: a review. Cellulose, 27: 6747-6766. https://doi.org/10.1007/s10570-020-03273-9 CR - Awogbemi, O. & D.V.V. Kallon, 2022. Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 6: 100229. https://doi.org/10.1016/j.cscee.2022.100229 CR - Azeredo, H.M.C., H. Barud, C.S. Farinas, V.M. Vasconcellos & A.M. Claro, 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3: 1-14. https://doi.org/10.3389/fsufs.2019.00007 CR - Azeredo, H.M.C., M.F. Rosa & L.H.C. Mattoso, 2017. Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97: 664-671. http://dx.doi.org/10.1016/j.indcrop.2016.03.013 CR - Azmi, S.N.N.S., Z.A. Samsu, A.S.F.M. Asnawi, H. Ariffind & S.S.S. Abdullah, 2023.The production and characterization of bacterial cellulose pellicles obtained from oil palm frond juice and their conversion to nanofibrillated cellulose. Carbohydrate Polymer Technologies and Applications, 5: 100327. https://doi.org/10.1016/j.carpta.2023.100327 CR - Bandyopadhyay, S., N. Saha, U.V. Brodnjak & P. Saha, 2018. Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Materials Research Express, 5 (11): 115405. https://doi.org/10.1088/2053-1591/aadb01 CR - Bharimalla, A.K., S.P. Deshmukh, N. Vigneshwaran, P.G. Patil & V. Prasad, 2017. Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polymer-Plastics Technology and Engineering, 56 (8): 805-823. https://doi.org/10.1080/03602559.2016.1233281 CR - Blasi, A., A. Verardi, C.G. Lopresto, S. Siciliano & P. Sangiorgio, 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling, 8 (61): 1-46. https://doi.org/10.3390/recycling8040061 CR - Bozdag, G., O. Pinar, O. Gündüz & D. Kazan, 2021. Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602. Biomass Conversion & Biorefinery, 13 (9): 7875-7886. https://doi.org/10.1007/s13399-021-01643-2 CR - Cacicedo, M.L., M.C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, A. Dima, A. Terpou, A. Koutinas & G.R. Castro, 2016. Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 213: 172-180. http://dx.doi.org/10.1016/j.biortech.2016.02.071 CR - Çakar, F., A. Katı, I. Özer, D.D. Demirbağ, F. Şahin & A.Ö. Aytekin, 2014. Newly developed medium and strategy for bacterial cellulose production. Biochemical Engineering Journal, 92: 35-40. http://dx.doi.org/10.1016/j.bej.2014.07.002 CR - Çakmakçı M.L., A.G. Karahan, İ. Çakır, A. Gündoğdu & A. Akoğlu, 2008. Selüloz Üretiminde Kullanılacak Mikro- Organizmaların Izolasyonu, Moleküler Tanısı Ve Mikrobiyel Selülozun Gıda Sanayinde Kullanım Olanaklarının Araştırılması. TÜBİTAK TOVAG Proje Raporu, Proje No: 105O156, 98 s. CR - Caldeira, C., V. Laurentiis, S. Corrado, F. Holsteijn & S. Sala, 2019. Quantification of food waste per product group along the food supply chain in the european union: A mass flow analysis. Resources, Conservation & Recycling, 149: 479-488. https://doi.org/10.1016/j.resconrec.2019.06.011 CR - Castro, C., R. Zuluaga, J. Putaux, G. Caro, I. Mondragon & P. Ganan, 2011. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84, 96-102. https://doi.org/10.1016/j.carbpol.2010.10.072 CR - Cazon, P. & M. Vazquez, 2021. Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids, 113: 106530. https://doi.org/10.1016/j.foodhyd.2020.106530 CR - Costa, A.F.S., F.C.G. Almeida, G.M. Vinhas & L.A. Sarubbo, 2017. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology, 8: 1-12. https://doi.org/10.3389/fmicb.2017.02027 CR - Efthymioua, M., E. Tsoukoa, C. Paterakia, A. Papagiannopoulos, P. Tzamalis, S. Pispas, K. Bethanis, I. Mantala & A. Koutinas, 2022. Property evaluation of bacterial cellulose nanostructures produced from confectionery wastes. Biochemical Engineering Journal, 186: 108575. https://doi.org/10.1016/j.bej.2022.108575 CR - El-Bestawy, E., A.S. Eltaweil & N.S. Khallaf, 2023. Effective production of bacterial cellulose using acidic dairy industry by-products and agro wastes. Sustainable Chemistry and Pharmacy, 33: 101064. https://doi.org/10.1016/j.scp.2023.101064 CR - El-Gendi, H., T.H. Taha, J.B. Ray & A.K. Saleh, 2023. Recent advances in bacterial cellulose.: a low-cost effective production media, optimization strategies and applications. Cellulose, 29: 7495-7533. https://doi.org/10.1007/s10570-022-04697-1 CR - Esa, F., S.M. Tasirin & N.A. Rahman, 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2: 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017 CR - FAO, 2019. The state of Food and Agriculture 2019: Moving forward on food loss and waste reduction. (Web page: https://www.fao.org/3/ca6030en/ca6030en.pdf) (Date accessed: August 2023). CR - Ferrer, A., L. Pal & M. Hubbe, 2017. Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 95: 574-582. http://dx.doi.org/10.1016/j.indcrop.2016.11.012 CR - Filippi, K., H. Papapostolou, M. Alexandri, A. Vlysidis, E.D. Myrtsi, D. Ladakis, C. Pateraki, S.A. Haroutounian & A. Koutinas, 2022. Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresource Technology, 343: 125989. https://doi.org/10.1016/j.biortech.2021.125989 CR - Ghozali, M., Y. Meliana & M. Chalid, 2021. Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44: 2131-2134. https://doi.org/10.1016/j.matpr.2020.12.274 CR - Gorgieva, S., U. Jancic, E. Cepec & J. Trcek, 2023. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436T and Komagataeibacter xylinus LMG 1518. International Journal of Biological Macromolecules, 244: 125368. https://doi.org/10.1016/j.ijbiomac.2023.125368 CR - Guimaraes, D.T., M. Oliveira Barros, R. Araujo e Silva, S.M.F. Silva, J.S. Almeida, M. Freitas Rosa, L.R.B. Gonçalves & A.I.S. Brigida, 2023. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. International Journal of Biological Macromolecules, 242: 124405. https://doi.org/10.1016/j.ijbiomac.2023.124405 CR - Güzel, M. & Ö. Akpınar, 2018. Bakteriyel selülozların üretimi ve özellikleri ile gıda ve gıda dışı uygulamalarda kullanımı. Akademik Gıda, 16 (2): 241-251. https://doi.org/10.24323/akademik-gida.449633 CR - Hasanin, M.S., M. Abdelraof, A.H. Hashem & H. El Saied, 2023. Sustainable bacterial cellulose production by Achromobacter using mango peel waste. Microbial Cell Factories, 22 (24): 1-12. https://doi.org/10.1186/s12934-023-02031-3 CR - Hestrin, S. & M. Schramm, 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journals, 58 (2): 345-352. https://doi.org/10.1042/bj0580345 CR - Heydorn, R.L., D. Lammers, M. Gottschling & K. Dohnt, 2023. Effect of food industry by‑products on bacterial cellulose production and its structural properties. Cellulose, 30: 4159-4179. https://doi.org/10.1007/s10570-023-05097-9 CR - Ishihara M., M. Matsunaga, N. Hayashi & V. Tisler, 2002. Utilization of D-xylose as carbon source for production of bacterial cellulose. Enzyme &Microbial Technology, 31 (7): 986-991. https://doi.org/10.1016/S0141-0229(02)00215-6 CR - Jang, E.J., B. Padhan, M. Patel, J.K. Pandey, B. Xu & R. Patelf, 2023. Antibacterial and biodegradable food packaging film from bacterial cellulose. Food Control, 153: 109902. https://doi.org/10.1016/j.foodcont.2023.109902 CR - Karanicola, P., M. Patsalou, P. Stergiou, A. Kavallieratou, N. Evripidou, P., Christou, G., Panagiotou, C., Damianou, E.M. Papamichael & M. Koutinas, 2021. Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery. Bioresource Technology, 342: 126010. https://doi.org/10.1016/j.biortech.2021.126010 CR - Kaur, M., A.K. Singh & A. Singh, 2023. Bioconversion of food industry waste to value added products: Current technological trends and prospects. Food Bioscience, 55: 102935. https://doi.org/10.1016/j.fbio.2023.102935 CR - Khan, S.B. & T. Kamal, 2022. Bacterial Cellulose Synthesis, Production, and Applications (1st edition). CRC Press, Boca Raton, FL, 228 pp. CR - Lahiri, A., S. Daniela, R., Kanthapazhamb, R., Vanarajc, A. Thambiduraia & L.S. Petera, 2023. A critical review on food waste management for the production of materials and biofuel. Journal of Hazardous Materials Advances, 10: 100266. https://doi.org/10.1016/j.hazadv.2023.100266 CR - Li, Z., F. Azi, Z. Ge, Y. Liu, X. Yin & M. Dong, 2021. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis. International Journal of Biological Macromolecules, 191: 211-221. https://doi.org/10.1016/j.ijbiomac.2021.09.077 CR - Li, Z., L. Wang, J. Hua, S. Jia, J. Zhang & H. Liu, 2015. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120: 115-119. https://doi.org/10.1016/j.carbpol.2014.11.061 CR - Lin, D., P. Lopez-Sanchez, R. Li & Z. Li, 2014. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology 151: 113-119. http://dx.doi.org/10.1016/j.biortech.2013.10.052 CR - Lin, D., Z. Liu, R. Shen, S. Chen & X. Yang, 2020. Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158: 1007-1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230 CR - Lin, S.P., I. L. Calvar, J. F. Catchmark, J.R. Liu, A. Demirci & K.C. Cheng, 2013. Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20: 2191-2219. https://doi.org/10.1007/s10570-013-9994-3 CR - Mishra, R.K., A. Sabu & S.K. Tiwari, 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22 (8): 949-978. https://doi.org/10.1016/j.jscs.2018.02.005 CR - Mohammadkazemi, F., M. Azin & A. Ashori, 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117: 518-523. http://dx.doi.org/10.1016/j.carbpol.2014.10.008 CR - Mou, J., Z. Qin, Y. Yang, S. Liu, W. Yan, L. Zheng, Y. Miao, H. Li, P. Fickers, C.S.K. Lin & X. Wang, 2023. Navigating practical applications of food waste valorisation based on the effects of food waste origins and storage conditions. Chemical Engineering Journal, 468: 143625. https://doi.org/10.1016/j.cej.2023.143625 CR - Navya, P.V., V. Gayathrib, D. Samanta & S. Sampatha, 2022. Bacterial cellulose: A promising biopolymer with interesting properties and applications. International Journal of Biological Macromolecules, 220: 435-461. https://doi.org/10.1016/j.ijbiomac.2022.08.056 CR - Neelima, S., S. Sreejith, S. Shajahan, A. Raj, L. Vidya, V.M. Aparna, E.K. Radhakrishnan & C. Sudarsanakumar, 2023. Highly crystalline bacterial cellulose production by Novacetimonas hansenii strain isolated from rotten fruit. Materials Letters, 333: 133622. https://doi.org/10.1016/j.matlet.2022.133622 CR - Öz, Y.E. & M. Kalender, 2023. A novel static cultivation of bacterial cellulose production from sugar beet molasses: Series static culture (SSC) system. International Journal of Biological Macromolecules, 225: 1306-1314. https://doi.org/10.1016/j.ijbiomac.2022.11.190 CR - Poyrazoğlu Çoban, E. & H.H. Bıyık, 2008. Asetik asit bakterilerinden elde edilen alternatif selüloz. Elektronik Mikrobiyoloji Dergisi, 6 (2): 19-26. CR - Revin, V., E. Liyaskina, M. Nazarkina, A. Bogatyreva & M. Shchankin, 2018. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49S: 151-159. https://doi.org/10.1016/j.bjm.2017.12.012 CR - Saleh, A.K., H. El-Gendi, E.M. El-Fakharany, M.E. Owda, M.A. Awad & E.A. Kamoun, 2022. Exploitation of cantaloupe peels for bacterial cellulose production and functionalization with green synthesized Copper oxide nanoparticles for diverse biological applications. Scientific Reports, 12: 19241. CR - Seberini, A., 2020. “Economic, social and environmental world impacts of food waste on society and zero waste as a global approach to their elimination”. The 19th International Scientific Conference Globalization and its Socio-Economic Consequences 2019 - Sustainability in the Global-Knowledge EconomySHS Web of Conferences, (October 9-10, Rajecke Teblice) papers. SHS Web of Conferences, Volume: 74, 03010. https://doi.org/10.1051/shsconf/20207403010 CR - Shi, Z., Y. Zhang, G.O. Phillips & G. Yang, 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35: 539-545. http://dx.doi.org/10.1016/j.foodhyd.2013.07.012 CR - Singhania, R.R., A.K. Patel, Y. Tseng, V. Kumar, C. Chen, D. Haldar, J.K. Saini & C. Dong, 2022. Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 344: 126343. CR - Taokaew, S., N. Nakson, J. Thienchaimongkol & T. Kobayashi, 2023. Enhanced production of fibrous bacterial cellulose in Gluconacetobacter xylinus culture medium containing modified protein of okara waste. Journal of Bioscience and Bioengineering, 135 (1): 71-78. https://doi.org/10.1016/j.jbiosc.2022.10.007 CR - Tarım ve Orman Bakanlığı, 2022. Çöpe atılan 18 milyon ton gıda artığı hayvan yemine dönüşecek. (Web page: https://www.tarimorman.gov.tr/Haber/5354/Cope-Atilan-18-Milyon-Ton-Gida-Artigi-Hayvan-Yemine-Donusecek) (Date accessed: August, 2023). CR - Thivya, P., S. Akalyab & V.R. Sinija, 2022. A comprehensive review on cellulose-based hydrogel and its potential application in the food industry. Applied Food Research, 2 (2): 100161. https://doi.org/10.1016/j.afres.2022.100161 CR - Tsang, Y.F., V. Kumar, P. Samadar, Y. Yang, J. Leed, Y.S. Ok, H. Song, K. Kim, E.E. Kwon & Y.J. Jeon, 2019. Production of bioplastic through food waste valorization. Environment International, 127: 625-644. https://doi.org/10.1016/j.envint.2019.03.076 CR - Tsouko, E., S. Maina, D. Ladakis, I.K. Kookos & A. Koutinas, 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renewable Energy, 160: 944-954. https://doi.org/10.1016/j.renene.2020.05.108 CR - Ul-Islam, M., W. Alhajaim, A. Fatima, S. Yasir, T. Kamal, Y. Abbas, S. Khan, A.H. Khan, S. Manan, M.W. Ullah & G. Yang, 2023. Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. International Journal of Biological Macromolecules, 231: 123269. https://doi.org/10.1016/j.ijbiomac.2023.123269 CR - Usmani, Z., M. Sharma, J. Gaffey, M. Sharma, R.J. Dewhurst, B. Moreau, J. Newbold, W. Clark, V. Kumar Thakur & V. Kumar Gupta, 2022. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresource Technology. 346: 126444. https://doi.org/10.1016/j.biortech.2021.126444 CR - Varjani, S., W. Yan, A. Priya, F. Xin & C.S.K. Lin, 2023. Management and valorisation strategies for transforming food waste into bio-based products: Roadblocks and the way forward. Current Opinion in Green and Sustainable Chemistry, 41: 100806. https://doi.org/10.1016/j.cogsc.2023.100806 CR - Ye, J., S. Zheng, Z. Zhang, F. Yang, K. Ma, Y. Feng, J. Zheng, D. Mao & X. Yang, 2019. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274: 518-524. https://doi.org/10.1016/j.biortech.2018.12.028 CR - Zhong, C., 2020. Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 8: 605374. https://doi.org/10.3389/fbioe.2020.605374 UR - https://doi.org/10.20289/zfdergi.1350359 L1 - https://dergipark.org.tr/en/download/article-file/3364225 ER -