TY - JOUR T1 - ABOUT GROUP OF POINTWISE INNER AUTOMORPHISMS FOR NILPOTENCY CLASS FOUR AU - Aydın, Ela PY - 2023 DA - October Y2 - 2023 DO - 10.33773/jum.1372208 JF - Journal of Universal Mathematics JO - JUM PB - Gökhan ÇUVALCIOĞLU WT - DergiPark SN - 2618-5660 SP - 58 EP - 61 VL - 6 IS - 3-Supplement LA - en AB - Let $L_{m,c}$ stand for the free metabelian nilpotent Lie algebra of class $c$ of rank $m$ over a field $K$ of characteristic zero.Automorphisms of the form $\varphi(x_i)=e^{adu_i}(x_i)$ are called pointwise inner, where $e^{adu_i}$, is the inner automorphisminduced by the element $u_i\in L_{m,c}$ for each $i=1,\ldots,m$. In the present study, we investigate the group structure ofthe group $\text{\rm PInn}(L_{m,4})$ of pointwise inner automorphisms of $L_{m,4}$ for nilpotency class four. KW - Lie algebras KW - metabelian KW - nilpotent KW - pointwise inner. CR - Yu.A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, 1985. Translation: VNU Science Press, Utrecht, (1987). CR - V. Drensky, Free Algebras and PI-Algebras, Springer, Singapore, (1999). CR - V. Drensky, S_. F_nd_k, Inner and outer automorphisms of free metabelian nilpotent Lie algebras. Communications in Algebra, Vol.40, No.12, pp.4389-4403 (2012). CR - E. Aydin, Pointwise inner automoprphisms of relatively free Lie algebras, Journal of Universal Mathematics, Vol.5, No.2, pp.76-80 (2022). CR - E. Aydin, On the Group of Pointwise Inner Automoprphisms, Journal of Universal Mathematics, Vol.6, No.2, pp.221-226 (2023). CR - Ş Findik, Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Mathematical Journal, Vol.35, No.2, pp.171-210 (2010). UR - https://doi.org/10.33773/jum.1372208 L1 - https://dergipark.org.tr/en/download/article-file/3458448 ER -