TY - JOUR T1 - The Long and Short-Term Effect of Social Media Manipulation on the NASDAQ Index AU - Ulu, Çağrı PY - 2025 DA - June Y2 - 2025 DO - 10.30798/makuiibf.1378862 JF - Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty JO - MAKU IIBFD PB - Burdur Mehmet Akif Ersoy University WT - DergiPark SN - 2149-1658 SP - 363 EP - 385 VL - 12 IS - 2 LA - en AB - Social media's power to manipulate the financial markets has sparked significant debates, particularly regarding its impact on stock exchanges and cryptocurrency markets. This study investigates the influence of social media manipulation, specifically through Twitter, on the NASDAQ Composite index during its decline from December 1, 2021, to January 31, 2022. Utilizing daily data, the research emphasizes the direction of the relationship between Twitter sentiment and the NASDAQ index. Sentiment analysis, conducted using TextBlob, determines the positivity or negativity of the language used in tweets related to NASDAQ. The study tests the hypothesis of a long- and short-term relationship between the sentiment scores and the index. Time series analysis required ensuring stationarity, which was verified using modern and traditional unit root tests. Subsequently, an ARDL model was employed to examine these relationships. The findings reveal that social media manipulation via Twitter does not impact NASDAQ Composite prices in either the long or short term. Instead, price variations in the NASDAQ Composite index are significantly influenced by the sentiment expressed on Twitter. KW - Twitter KW - Sentiment Analysis KW - ARDL Bound Test KW - NASDAQ CR - Adams, T., Ajello, A., Silva, D., & Vazquez‑Grande, F. (2023). More than words: Twitter chatter and financial market sentiment. (FEDS Working Paper No. 2023-034). https://doi.org/10.17016/FEDS.2023.034 CR - Aqlan, A. A. Q., Manjula, B., & Naik, R. L. (2019). A study of sentiment analysis: Concepts, techniques, and challenges. In N. Chaki, N. Devarakonda, A. Sarkar, & N. C. Debnath (Eds.), Proceedings of the International Conference on Computational Intelligence and Data Engineering (Lecture Notes on Data Engineering and Communications Technologies, Vol. 28, pp. 147–162). Springer. https://doi.org/10.1007/978-981-13-6459-4_16 CR - Brown, R. L., Durbin, J. & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Royal Statistical Society,37(2), 149-192. CR - Chen, N. (2022). Bitcoin price and miner behavior an application of ARDL model. Journal of Financial Studies & Research,1-16. CR - Chen, H., De, P., Hu, Y. J., & Hwang, B. H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5), 1367–1403. https://doi.org/10.1093/rfs/hhu001 Cristescu, R., Nebozhyn, M., Zhang, C., Albright, A., Kobie, J., Huang, L., Zhao, Q., Wang, A., Ma, H., Cao, Z. A., Morrissey, M., Ribas, A., Grivas, P., Cescon, D. W., McClanahan, T. K., Snyder, A., Ayers, M., Lunceford, J., & Loboda, A. (2022). Transcriptomic determinants of response to pembrolizumab monotherapy across solid tumor types. Clinical Cancer, 28(8), 1680-1689. https://doi.org/10.1158/1078-0432.CCR-21-3329 CR - Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.1080/01621459.1979.10482531 CR - Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072. CR - Enders, W. & Lee, J. (2012). The flexible Fourier form and Dickey–Fuller type unit root tests. Economics Letters, 117(1), 196-199. CR - Gaies, B., M. S. Nakhli, J. M. Sahut & Guesmi, K. (2021). Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies. Technological Forecasting & Social Change, 172, 1-11. CR - Gozbasi, O., Altinoz, B., Sahin, E. E. (2021). Is Bitcoin a safe haven? A study on the factors that affect Bitcoin prices. International Journal of Economics and Financial Issues, Econjournals, 11(4), pp. 35-40. CR - Harguem S., Chabani, Z., Noaman, S.,Amjad, M., Alvi, M. B.,Asif, M., Mehmood, M. H. & Al–kassem, A. H. (2022). Machine learning based prediction of stock exchange on NASDAQ 100: A Twitter mining approach. 2022 International Conference on Cyber Resilience (ICCR) Dubai, United Arab Emirates. CR - Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. In G. Dellino & C. Meloni (Eds.), Uncertainty Management in Simulation‑Optimization of Complex Systems (pp. 101–122). Springer. https://doi.org/10.1007/978-1-4899-7547-8_5 CR - Katsafados, A.G., Nikoloutsopoulos, S.& Leledakis, G. N. (2023). Twitter sentiment and stock market: A COVID-19 analysis. Journal of Economic Studies, 50(8) https://doi.org/10.1108/JES-09-2022-0486. CR - Kjærland, F., Meland, M., Oust, A. & Øyen, V. (2018). How can Bitcoin price fluctuations be explained?. International Journal of Economics and Financial Issues, 8(1), 323-332. CR - Kolasani S. V., Assaf, R. (2020) Predicting stock movement using sentiment analysis of Twitter feed with neural networks. Journal of Data Analysis and Information Processing, (8), 309-319 CR - Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer. https://doi.org/10.1007/978-3-540-27752-1 CR - Newey, W. K. & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708. CR - Natural Language Toolkit. (2023, April 19). Documentation. https://www.nltk.org/. CR - Pesaran, M. H., Shin, Y.& Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326. CR - Phillips C. B. P. & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. CR - Pruengkarn, R., Wong, K. W., & Fung, C. C. (2017). A review of data mining techniques and applications. Journal of Advanced Computational Intelligence and Intelligent Informatics, 21(1), 31–58. CR - Rajput, S.K.O., Soomro I. A.& Soomro, N. A. (2022). Bitcoin sentiment index, Bitcoin performance and US Dollar exchange rate. Journal of Behavioral Finance, 23(2), 150-165. CR - Rao T. & Srivastava, S. (2012). Analyzing stock market movements using Twitter sentiment analysis. In 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (pp. 119–126). IEEE. https://doi.org/10.1109/ASONAM.2012.30 CR - Renault, T. (2017). Market manipulation and suspicious stock recommendations on social media. SSRN Electronic Journal. http://dx.doi.org/10.2139/ssrn.3010850 CR - Sadeghi, Z., & Matwin, S. (2024). A review of global sensitivity analysis methods and a comparative case study on digit classification. [Preprint]. ArXiv. https://doi.org/10.48550/arXiv.2406.16975 CR - Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., & Tarantola, S. (2008). Global sensitivity analysis: The primer. John Wiley & Sons. CR - Solomon, M. R. (2014). From thinking to doing: Toward a hands-on consumer behavior course. In C. H. Noble (Eds.), Proceedings of the 1999 academy of marketing science (AMS) annual conference, (p. 55). Springer. CR - Yang, N., Fernández‑Pérez, A., & Indriawan, I. (2024). Spillover between investor sentiment and volatility: The role of social media. International Review of Financial Analysis, 96(Part A), 103643. https://doi.org/10.1016/j.irfa.2024.103643 CR - Yao, J. T. (2003). Sensitivity analysis for data mining. In 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, Chicago, IL, USA, (pp. 272-277). CR - Zhang X., Fuehres, H. & P. A. Gloor (2011). Predicting stock market indicators through Twitter “I hope it is not as bad as I fear”. Procedia - Social and Behavioral Sciences, 26, 55-62. CR - Zheludev, I., Smith, R., & Aste, T. (2015). When can social media lead financial markets?. Scientific Reports, 4, Article 4213. https://doi.org/10.1038/srep04213 UR - https://doi.org/10.30798/makuiibf.1378862 L1 - https://dergipark.org.tr/en/download/article-file/3486976 ER -