TY - JOUR T1 - Systems of left translates and oblique duals on the Heisenberg group AU - Massopust, Peter AU - Das, Santi AU - Ramakrishnan, Radha PY - 2023 DA - December Y2 - 2023 DO - 10.33205/cma.1382306 JF - Constructive Mathematical Analysis JO - CMA PB - Tuncer ACAR WT - DergiPark SN - 2651-2939 SP - 222 EP - 236 VL - 6 IS - 4 LA - en AB - In this paper, we characterize the system of left translates $\{L_{(2k,l,m)}g:k,l,m\in\mathbb{Z}\}$, $g\in L^2(\mathbb{H})$, to be a frame sequence or a Riesz sequence in terms of the twisted translates of the corresponding function $g^\lambda$. Here, $\mathbb{H}$ denotes the Heisenberg group and $g^\lambda$ the inverse Fourier transform of $g$ with respect to the central variable. This type of characterization for a Riesz sequence allows us to find some concrete examples. We also study the structure of the oblique dual of the system of left translates $\{L_{(2k,l,m)}g:k,l,m\in\mathbb{Z}\}$ on $\mathbb{H}$. This result is also illustrated with an example. KW - B-splines KW - Heisenberg group KW - Gramian KW - Hilbert-Schmidt operator KW - Riesz sequence KW - moment problem KW - oblique dual KW - Weyl transform CR - M. Abramowitz, I. Stegun: Handbook of Mathematical Functions, Applied Mathematics Series 55, National Bureau of Standards (1972). CR - S. Arati, R. Radha: Frames and Riesz bases for shift invariant spaces on the abstract Heisenberg group, Indag. Math. (N.S.), 30 (1) (2019), 106–127. CR - S. Arati, R. Radha: Orthonormality of wavelet system on the Heisenberg group, J. Math. Pures Appl., 131 (2019), 171–192. CR - S. Arati, R. Radha: Wavelet system and Muckenhoupt $A_2$ condition on the Heisenberg group, Colloq. Math., 158 (1) (2019), 59–76. CR - D. Barbieri, E. Hernández, and A. Mayeli: Bracket map for the Heisenberg group and the characterization of cyclic subspaces, Appl. Comput. Harmon. Anal., 37 (2) (2014), 218–234. CR - M. Bownik: The structure of shift-invariant subspaces of $L^2(R^n)$, J. Funct. Anal., 177 (2) (2000), 282–309. CR - M. Bownik, K. A. Ross: The structure of translation-invariant spaces on locally compact abelian groups, J. Fourier Anal. Appl., 21 (4) (2015), 849–884. CR - C. Cabrelli, V. Paternostro: Shift-invariant spaces on LCA groups, J. Funct. Anal., 258 (6) (2010), 2034–2059. CR - O. Christensen: An Introduction to Frames and Riesz Bases, second ed., Applied and Numerical Harmonic Analysis, Birkhäuser/Springer [Cham] (2016). CR - O. Christensen, H. O. Kim, R. Y. Kim, and J. K. Lim: Riesz sequences of translates and generalized duals with support on [0, 1], J. Geom. Anal., 16 (4) (2006), 585–596. CR - B. Currey, A. Mayeli, and V. Oussa: Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications, J. Fourier Anal. Appl., 20 (2) (2014), 384–400. CR - S. R. Das, R. Radha: Shift-invariant system on the Heisenberg Group, Adv. Oper. Theory, 6 (1) (2021), 27. CR - G. B. Folland: Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ (1989). CR - J. W. Iverson: Frames generated by compact group actions, Trans. Amer. Math. Soc., 370 (1) (2018), 509–551. CR - M. S. Jakobsen, J. Lemvig: Reproducing formulas for generalized translation invariant systems on locally compact abelian groups, Trans. Amer. Math. Soc., 368 (12) (2016), 8447–8480. CR - R. A. Kamyabi Gol, R. R. Tousi: The structure of shift invariant spaces on a locally compact abelian group, J. Math. Anal. Appl., 340 (1) (2008), 219–225. CR - S. G. Mallat: Multiresolution approximations and wavelet orthonormal bases of $L^2({\bf R})$, Trans. Amer. Math. Soc., 315 (1) (1989), 69–87. CR - Y. Meyer: Ondelettes et fonctions splines, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau, 1987, pp. Exp. No. VI, 18. CR - R. Radha , S. Adhikari: Shift-invariant spaces with countably many mutually orthogonal generators on the Heisenberg group, Houston J. Math., 46 (2) (2020), 435–463. CR - R. Radha, N. S. Kumar: Shift invariant spaces on compact groups, Bull. Sci. Math., 137 (4) (2013), 485–497. CR - S. Thangavelu: Harmonic Analysis on the Heisenberg group, Progress in Mathematics, Vol. 159, Birkhäuser Boston, Inc., Boston, MA (1998). UR - https://doi.org/10.33205/cma.1382306 L1 - https://dergipark.org.tr/en/download/article-file/3501161 ER -