TY - JOUR T1 - GENERALIZED TOPOLOGICAL OPERATOR ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-OPERATOR) THEORY IN GENERALIZED TOPOLOGICAL SPACES ($\mathcal{T}_{\mathfrak{g}}$-SPACES): PART IV. GENERALIZED DERIVED ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-DERIVED) AND GENERALIZED CODERIVED ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-CODERIVED) OPERATORS AU - Khodabocus, Mohammad Irshad AU - Sookıa, Noor-ul-hacq AU - Somanah, Radhakhrishna Dinesh PY - 2024 DA - July Y2 - 2024 DO - 10.33773/jum.1393185 JF - Journal of Universal Mathematics JO - JUM PB - Gökhan ÇUVALCIOĞLU WT - DergiPark SN - 2618-5660 SP - 128 EP - 165 VL - 7 IS - 2 LA - en AB - In a recent paper (\textsc{Cf.} \cite{KHODABOCUS_2023_4}), we have introduced the definitions and studied the essential properties of the generalized topological operators $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ (\textit{$\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-derived} and \textit{$\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-coderived operators}) in a generalized topological space $\mathfrak{T}_{\mathfrak{g}} = \left(\Omega,\mathcal{T}_{\mathfrak{g}}\right)$ (\textit{$\mathcal{T}_{\mathfrak{g}}$-space}). Mainly, we have shown that $\left(\operatorname{\mathfrak{g}-Der_{\mathfrak{g}}},\operatorname{\mathfrak{g}-Cod_{\mathfrak{g}}}\right): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ is a pair of both \textit{dual and monotone $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-operators} that is \textit{$\left(\emptyset,\Omega\right)$, $\left(\cup,\cap\right)$-preserving}, and \textit{$\left(\subseteq,\supseteq\right)$-preserving} relative to $\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-(open, closed) sets. We have also shown that $\left(\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}},\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}\right): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ is a pair of \textit{weaker} and \textit{stronger $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-operators}. In this paper, we define by transfinite recursion on the class of successor ordinals the $\delta^{\operatorname{th}}$-iterates $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ (\textit{$\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-derived} and \textit{$\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-coderived operators}) of $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$, respectively, and study their basic properties in a $\mathcal{T}_{\mathfrak{g}}$-space. Moreover, we establish the necessary and sufficient conditions for $\bigl(\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)},\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}\bigr): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ to be a pair of $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-derived and $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-coderived operators in $\mathfrak{T}_{\mathfrak{g}}$. Finally, we diagram various relationships amongst $\operatorname{der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{cod}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ and present a nice application to support the overall study. KW - Generalized topological space ($\mathcal{T}_{\mathfrak{g}}$-space) KW - generalized sets ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-sets) KW - $\delta^{\operatorname{th}}$-order generalized derived operator ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-derived operator) KW - $\delta^{\operatorname{th}}$-order generalized coderived operator ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-coderived operator) CR - M. I. Khodabocus, N. -U. -H. Sookia, R. D. Somanah Generalized Topological Operator (g-Tg Operator) Theory in Generalized Topological Spaces (Tg-spaces): Part III. Generalized Derived (g-Tg-Derived) and Generalized Coderived (g-Tg-Coderived) Operators, Journal of Universal Mathematics, vol. 6, N. 2, pp. 183-220 (2023). CR - M. I. Khodabocus, N. -U. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part II. Generalized Interior and Generalized Closure, Proceedings of International Mathematical Sciences, vol. x, N. y, pp. z-zz (2023). CR - M. I. Khodabocus, N. -U. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure, Proceedings of International Mathematical Sciences, vol. x, N. y, pp. z-zz (2023). CR - M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Connectedness (g-Tg-Connectedness) in Generalized Topological Spaces (Tg-Spaces), Journal of Universal Mathematics,vol. 6, N. 1, pp. 1 -38 (2023). CR - M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Compactness in Generalized Topological Spaces: Part II. Countable, Sequential and Local Properties, Fundamentals of Contemporary Mathematical Sciences, vol. 3, N. 2, pp. 98-118 (2022). CR - M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Compactness in Generalized Topological Spaces: Part I. Basic Properties, Fundamentals of Contemporary Mathematical Sciences, vol. 3, N. 1, pp. 26-45 (2022). CR - M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Separation Axioms in Generalized Topological Spaces, Journal of Universal Mathematics, vol. 5, N. 1, pp. 1-23 (2022). CR - M. I. Khodabocus, N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory, vol. 36, pp. 18-38 (2021). CR - M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, R´eduit, Mauritius (2020). CR - Y. Lei and J. Zhang, Generalizing Topological Set Operators, Electronic Notes in Theoretical Science, vol. 345, pp. 63-76 (2019). CR - S. Ahmad, Absolutely Independent Axioms for the Derived Set Operator, The American Mathematical Monthly, vol. 73, N. 4, pp. 390-392 (1966). CR - A. Baltag and N. Bezhanishvili and A. ¨Ozg¨un and S. Smets, A Topological Apprach to Full Belief, Journal of Philosophical Logic, vol. 48 N. 2, pp. 205-244 (2019). CR - D. Cenzer and D. Mauldin, On the Borel Class of the Derived Set Operator, Bull. Soc. Math. France, vol. 110, pp. 357–380 (1982). CR - F. R. Harvey, The Derived Set Operator, The American Mathematical Monthly, vol. 70, N. 10, pp. 1085-1086 (1963). CR - E. R. Hedrick, On Properties of a Domain for Which Any Derived Set is Closed, Transactions of the American Mathematical Society, vol. 12, N. 3, pp. 285-294 (1911). CR - R. M. Latif, Characterizations and Applications of γ-Open Sets, Soochow Journal of Mathematics, vol. 32, N. 3, pp. 1-10 (2006). CR - S. Modak, Some Points on Generalized Open Sets, Caspian Journal of Mathematical Sciences (CJMS), vol. 6, N. 2, pp. 99-106 (2017). CR - G. H. Moore, The Emergence of Open Sets, Closed Sets, and Limit Points in Analysis and Topology, Historia Mathematica, vol. 35, N. 3, pp. 220-241 (2008). CR - A. Al-Omari and M. S. M. Noorani, On b-Closed Sets, Bull. Malays. Sci. Soc., vol. 32, N. 1., pp. 19-30 (2009). CR - R. Rajendiran and M. Thamilselvan, Properties of g∗s∗-Closure, g∗s∗-Interior and g∗s∗-Derived Sets in Topological Spaces, Applied Mathematical Sciences, vol. 8, N. 140, pp. 6969-6978 (2014). CR - J. A. R. Rodgio and J. Theodore and H. Jansi, Notions via β∗-Open Sets in Topological Spaces, IOSR Journal of Mathematics (IOSR-JM), vol. 6, N. 3, pp. 25-29 (2013). CR - R. Spira, Derived-Set Axioms for Topological Spaces, Portugaliar Mathematica, vol. 26, pp. 165-167 (1967). CR - G. Cantor, ¨Uber die Ausdehnung eines Satzes aus der Theorie der Trigonometrischen Reihen, Math. Ann., vol. 5, pp. 123-132 (1872). CR - G. Cantor, ¨Uber Unendliche, Lineaere Punktmannigfaltigkeiten, Ibid., vol. 20, N. III, pp.113-121 (1882). CR - N. E. Rutt, On Derived Sets, National Mathematics Magazine, vol. 18, N. 2, pp. 53–63 (1943). CR - J. Tucker, Concerning Consecutive Derived Sets, The American Mathematical Monthly, vol.74, N. 5, pp. 555-556 (1967). CR - D. Higgs, Iterating the Derived Set Function, The American Mathematical Monthly, vol. 90, N. 10, pp. 693-697 (1983). UR - https://doi.org/10.33773/jum.1393185 L1 - https://dergipark.org.tr/en/download/article-file/3547489 ER -