TY - JOUR T1 - Asphodelus aestivus Brot. ve Nigella sativa L. esansiyel yağının bazı fungus türlerine karşı antifungal etkisi TT - Antifungal effect of essential oil of Asphodelus aestivus Brot. and Nigella sativa L. against some fungus species AU - Zöngür, Alper PY - 2024 DA - April Y2 - 2024 DO - 10.7212/karaelmasfen.1395445 JF - Karaelmas Fen ve Mühendislik Dergisi PB - Zonguldak Bulent Ecevit University WT - DergiPark SN - 2146-7277 SP - 28 EP - 35 VL - 14 IS - 1 LA - tr AB - Günümüzde çoğu bitki farmasötik çalışmaların konusunu oluşturmaktadır. Bu çalışma, tamamlayıcı tıpta sıklıkla kullanılan Asphodelus aestivus Brot. ve Nigella sativa L. bitki uçucu yağ içeriğinin belirlenmesi ve antifungal etkinliğinin değerlendirilmesi amacı ile yapılmıştır. Bitki uçucu yağlarının eldesi, hidrodistilasyon yöntemi kullanılarak yapılmıştır. Elde edilen uçucu yağ bileşenleri ise Gaz Kromotografisi-Kütle Spektrometresi (GC/MS) ile belirlenmiştir. A. aestivus Brot. bitkisinde toplam 22 farklı bileşen bulunmuş olup uçucu yağında pentakozan %15.19, trikozan %14.36, oktadekatrienoik asit %19.62 ve hekzadekanoik asit %16.94 olarak belirlenmiştir. Benzer şekilde, N. sativa L. bitkisinde toplam 26 farklı bileşen bulunmuş olup uçucu yağında p-simen %23.64 ve timokinon %32.56 olarak belirlenmiştir. Ayrıca, farklı konsantrasyondaki bitki uçucu yağları sırasıyla (0.1 µL, 1 µL, 10 µL, 100 µL, 1000 µL); Fusarium oxysporum, Aspergillus flavus, Rhizopus oryzae, Penicillium expansum, Alternaria solani ve Aspergillus paraciticus fungus türleri üzerinde test edilmiştir. Uçucu yağların antifungal aktivite testleri disk difizyon metodu ile yapılmış ve inhibisyon çapları belirlenmiştir. Sonuç olarak, A. aestivus Brot. ve N. sativa L.’nın farklı uçucu yağ konsantrasyonlarının tüm türlerde etkili olduğu görülmüştür. Dahası, bitkisel uçucu yağların yüksek konsantrasyonlarının diğer türlere göre, F. oxysporum türlerini % 28.8-33.1 daha fazla inhibe ederken, A. flavus türlerini ise %22.4-26.1 oranın da daha az inhibe ettiği belirlenmiştir. KW - Antifungal etki KW - Asphodelus aestivus KW - Nigella sativa KW - uçucu yağlar N2 - Today, most plants are the subject of pharmaceutical studies. This study was conducted to determine the essential oil content of Asphodelus aestivus Brot. and Nigella sativa L. plants, which are frequently used in complementary medicine, and to evaluate their antifungal activity. Plant essential oils were obtained by hydrodistillation method. The components of the essential oils obtained were analyzed by Gas Chromatography-Mass Spectrometry (GC/MS). A total of 22 different components were found in the A. aestivus Brot. plant, and its essential oil was determined as pentacosane 15.19%, tricosane 14.36%, octadecatrienoic acid 19.62% and hexadecanoic acid 16.94%. Similarly, a total of 26 different components were found in N. sativa L. plant, and p-cymene was determined as 23.64% and thymoquinone was determined as 32.56% in its essential oil. Additionally, plant essential oils at different concentrations were used respectively (0.1 µL, 1 µL, 10 µL, 100 µL, 1000 µL); It has been tested on the fungal species Fusarium oxysporum, Aspergillus flavus, Rhizopus oryzae, Penicillium expansum, Alternaria solani and Aspergillus paraciticus. Antifungal activity tests of essential oils were performed by disk diffusion method and inhibition diameters were determined. As a result, different essential oil concentrations of A. aestivus Brot. and N. sativa L. were found to be effective in all species. Moreover, it was determined that high concentrations of herbal essential oils inhibited F. oxysporum species by 28.8-33.1% more and inhibited A. flavus species by 22.4-26.1% less than other species. CR - Afsharnia, F. 2023. Optimization of in vitro and in vivo antifungal effects of trehalose coating included Artemisia sieberi essential oil on mulberry (Morus alba var. nigra) fruits using the hybrid RSM-GRA method. Food Science and Biotechnology, 1-15. https://doi.org/10.1007/s10068-022-01236-3. CR - Ali, B. H., Blunden, G. 2003. Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research: An international journal devoted to pharmacological and toxicological evaluation of natural product derivatives, 17(4), 299-305. https://doi.org/10.1002/ptr.1309 CR - Alsarhan, A., Salman, K. B., Olimat, S. 2023. Chemical Composition of the Essential Oils of the Flowers Asphodelus aestivus Brot. Grown Wild in Jordan. Jordan Journal of Pharmaceutical Sciences, 16(4), 734-739. https://doi.org/10.35516/jjps.v16i4.1082 CR - Antonio-Gutiérrez, O., Alvízar-Martínez, J. A., Solano, R., Vásquez-López, A., Hernández-Valladolid, S. L., Lustre-Sánchez, H., ... Lagunez-Rivera, L. 2023. Microwave-assisted hydrodistillation of essential oil from Plectranthus amboinicus: Evaluation of its antifungal effect and chemical composition. Life, 13(2), 528. https://doi.org/10.3390/life13020528 CR - Aslantürk, Ö. S., Çelik, T. A. 2013. Investigation of antioxidant, cytotoxic and apoptotic activities of the extracts from tubers of Asphodelus aestivus Brot. Afr. J. Pharm. Pharmacol., 7(11), 610-621. https://doi.org/10.5897/AJPP12.1149 CR - Azizi, Z., Omran, S. M., Sheikhzadeh, S., Gholinia, H., Gharekhani, S. 2023. Antifungal effect of Ginger essential oil spray on Candida albicans adhering to self-cure acrylic plates. Frontiers in Dentistry, 20, 3. https://doi.org/10.18502/fid.v20i3.12279 CR - Bharadvaja, N. 2023. Aromatic plants: a multifaceted asset. Brazilian Journal of Botany, 1-14. https://doi.org/10.1007/s40415-023-00882-z CR - Boatwright, J. S. 2012. Asphodelus fistulosus (Asphodelaceae, Asphodeloideae), a new naturalised alien species from the West Coast of South Africa. South African Journal of Botany, 79, 48-50. https://doi.org/10.1016/j.sajb.2011.11.008 CR - Boyko, O., Brygadyrenko, V. 2021. Nematicidal activity of essential oils of medicinal plants. Folia Oecologica, 48(1), 42-48. https://doi.org/10.2478/foecol-2021-0005 CR - Corrêa, A. N. R., Ferreira, C. D. 2023. Essential oil for the control of fungi, bacteria, yeasts and viruses in food: An overview. Critical Reviews in Food Science and Nutrition, 63(27), 8960-8974. https://doi.org/10.1080/10408398.2022.2062588 CR - Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Dubey, N. K. 2021. Insecticidal and fungicidal efficacy of essential oils and nanoencapsulation approaches for the development of next generation ecofriendly green preservatives for management of stored food commodities: an overview. International Journal of Pest Management, 1-32. https://doi.org/10.1080/09670874.2021.1969473 CR - Davis, P., Miller, R. 1988. Flora of Turkey, 10 (Vol. 1). Edinburgh University Press. CR - Falleh, H., Jemaa, M. B., Saada, M., Ksouri, R. 2020. Essential oils: A promising eco-friendly food preservative. Food Chemistry, 330, 127268. https://doi.org/10.1016/j.foodchem.2020.127268 CR - Fatima Shad, K., Soubra, W., Cordato, D. J. 2021. The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases. Clinical and Experimental Pharmacology and Physiology, 48(11), 1445-1453. https://doi.org/10.1111/1440-1681.13553 CR - Ghahramanloo, K. H., Kamalidehghan, B., Akbari Javar, H., Teguh Widodo, R., Majidzadeh, K., Noordin, M. I. 2017. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Design, Development and Therapy, 11, 2221-2226. https://doi.org/10.2147/DDDT.S87251 CR - Gözcü, S., Akşit, Z. 2023. Chemical composition and antibacterial activity of three volatile oils extracted from Nigella sativa L. seeds. Black Sea Journal of Health Science, 6(4), 662-666. https://doi.org/10.19127/bshealthscience.1318520 CR - Gras, A., Parada, M., Rigat, M., Valles, J., Garnatje, T. 2018. Folk medicinal plant mixtures: Establishing a protocol for further studies. Journal of Ethnopharmacology, 214, 244-273. https://doi.org/10.1016/j.jep.2017.12.014 CR - Haloci, E., Manfredini, S., Toska, V., Vertuani, S., Ziosi, P., Topi, I., … Kolani, H. 2012. Antibacterial and antifungal activity assessment of Nigella sativa essential oils. World Acad. Sci. Eng. Technol., 66(6), 1198-1200. https://doi.org/10.5281/zenodo.1083473 CR - Karayel, H. B., Akçura, M. 2016. Farklı lokasyonlarda yetiştirilen Anadolu adaçayı (Salvia fruticosa Mill.)’in uçucu yağ bileşenlerindeki değişimlerin incelenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, (13), 13-23. CR - Kazemi, M. 2014. Phytochemical composition, antioxidant, anti-inflammatory and antimicrobial activity of Nigella sativa L. essential oil. Journal of Essential Oil Bearing Plants, 17(5), 1002-1011. https://doi.org/10.1080/0972060X.2014.914857 CR - Kumar, A., Shukla, R., Singh, P., Prasad, C. S., Dubey, N. K. 2008. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innovative Food Science & Emerging Technologies, 9(4), 575-580. https://doi.org/10.1016/j.ifset.2007.12.005 CR - Mahmoudvand, H., Sepahvand, A., Jahanbakhsh, S., Ezatpour, B., Mousavi, S. A. 2014. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. Journal de Mycologie Medicale, 24(4), 155-161. https://doi.org/10.1016/j.mycmed.2014.06.048 CR - Malmir, M., Serrano, R., Canica, M., Silva-Lima, B., Silva, O. 2018. A comprehensive review on the medicinal plants from the genus Asphodelus. Plants, 7(1), 20. https://doi.org/10.3390/plants7010020 CR - Peksel, A., Altas-Kiymaz, N., Imamoglu, S. 2012. Evaluation of antioxidant and antifungal potential of Asphodelus aestivus Brot. growing in Turkey. J. Med. Plants Res, 6(2), 253-265. https://doi.org/10.5897/JMPR11.1229 CR - Polatoğlu, K., Demirci, B., Başer, K. H. C. 2016. High amounts of n-alkanes in the composition of Asphodelus aestivus Brot. flower essential oil from Cyprus. Journal of Oleo Science, 65(10), 867-870. https://doi.org/10.5650/jos.ess15197 CR - Radünz, M., Camargo, T. M., dos Santos Hackbart, H. C., Alves, P. I. C., Radünz, A. L., Gandra, E. A., da Rosa Zavareze, E. 2021. Chemical composition and in vitro antioxidant and antihyperglycemic activities of clove, thyme, oregano, and sweet orange essential oils. LWT, 138, 110632. https://doi.org/10.1016/j.lwt.2020.110632 CR - Ramadan, M. F. 2007. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. International Journal of Food Science & Technology, 42(10), 1208-1218. https://doi.org/10.1111/j.1365-2621.2006.01417.x CR - Rao, J., Chen, B., McClements, D. J. 2019. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annual review of food science and technology, 10, 365-387. https://doi.org/10.1146/annurev-food-032818-121727 Rather, L. J., Akhter, S., Hassan, Q. P., Mohammad, F. 2017. Chemistry of plant dyes: Applications and environmental implications of dyeing processes. Current Environmental Engineering, 4(2), 103-120. https://doi.org/10.2174/2212717804666161216114949 CR - Shafodino, F. S., Lusilao, J. M., Mwapagha, L. M. 2022. Phytochemical characterization and antimicrobial activity of Nigella sativa seeds. PloS one, 17(8), e0272457. https://doi.org/10.1371/journal.pone.0272457 CR - Shanmugam, M. K., Arfuso, F., Kumar, A. P., Wang, L., Goh, B. C., Ahn, K. S., … Sethi, G. 2018. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological Research, 129, 357-364. https://doi.org/10.1016/j.phrs.2017.11.023 CR - Sırıken, B., Yavuz, C., Güler, A. 2018. Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery, 5(11), 374-379. https://doi.org/10.17546/msd.482929 CR - Tiwari G., Gupta M., Devhare D., Tiwari R. 2023. Therapeutic and phytochemical properties of thymoquinone derived from Nigella sativa. Current Drug Research Reviews,1, 37605475. https://doi.org/10.2174/2589977515666230811092410 CR - Tomar, O., Akarca, G. 2020. The Antibacterial effects of çiriş (Asphodelus aestivus Brot.) on some foodborne pathogenic bacteria. Avrupa Bilim ve Teknoloji Dergisi, (18), 11-15. https://doi.org/10.31590/ejosat.650511 CR - Ugulu, I., Baslar, S., Yorek, N., Dogan, Y. 2009. The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. Journal of Medicinal Plants Research, 3(5), 345-367. CR - Uma, K., Huang, X., Kumar, B. A. 2017. Antifungal effect of plant extract and essential oil. Chinese Journal of Integrative Medicine, 23(3), 233-239. https://doi.org/10.1007/s11655-016-2524-z CR - Wajs, A., Bonikowski, R., Kalemba, D. 2008. Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour and Fragrance Journal, 23(2), 126-132. https://doi.org/10.1002/ffj.1866 CR - Yang, F., Chen, L., Zhao, D., Guo, T., Yu, D., Zhang, X., … Chen, J. 2023. A novel water-soluble chitosan grafted with nerol: Synthesis, characterization and biological activity. International Journal of Biological Macromolecules, 232, 123498. https://doi.org/10.1016/j.ijbiomac.2023.123498 CR - Zouirech, O., Alyousef, A. A., El Barnossi, A., El Moussaoui, A., Bourhia, M., Salamatullah, A. M., … Derwich, E. 2022. Phytochemical analysis and antioxidant, antibacterial, and antifungal effects of essential oil of black caraway (Nigella sativa L.) seeds against drug-resistant clinically pathogenic microorganisms. BioMed Research International, 2022, 1-12. https://doi.org/10.1155/2022/5218950 UR - https://doi.org/10.7212/karaelmasfen.1395445 L1 - https://dergipark.org.tr/en/download/article-file/3557237 ER -