TY - JOUR T1 - Two parameter Ridge estimator for the Bell regression model AU - Bulut, Y. Murat AU - Işılar, Melike PY - 2024 DA - September Y2 - 2024 DO - 10.31801/cfsuasmas.1397263 JF - Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics JO - Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. PB - Ankara University WT - DergiPark SN - 1303-5991 SP - 712 EP - 723 VL - 73 IS - 3 LA - en AB - One solution to the multicollinearity problem in the Bell regression model, which is utilized for over-dispersion issues, is biased estimators. In recent years, some biased estimators have been proposed in the Bell regression model that can be used in modelling correlated count data. In this article, Bell two-parameter ridge estimator (BTPRE) is proposed. This two-parameter estimator has some advantages over the previously proposed estimators. More efficient results are obtained than the Maximum Likelihood estimator (MLE) and Bell Ridge estimator (BRE) in the case of multicollinearity by using BTPRE. Monte Carlo simulation study and real data results are obtained to show that the proposed estimator is better. Estimators have been compared according to the Mean Squared Error (MSE) criterion. BTPRE is superior to other estimators. KW - Regression KW - count data KW - overdispersion KW - multicollinearity CR - Alheety, M. I., Qasim, M., M˚ansson, K., Kibria, B. M., Modified almost unbiased two parameter estimator for the Poisson regression model with an application to accident data, SORT, 45 (2021), 121-142. DOI: 10.2436/20.8080.02.112 CR - Algamal, Y. A., Developing a ridge estimator for the gamma regression model, Journal of Chemometrics, (2018), 32. DOI: 10.1002/cem.3054 CR - Algamal, Y. A., Performance of ridge estimato in inverse Gaussian regression model, Communications in Statistics-Theory and Methods, 48(15) (2019), 3836–3849. DOI: 10.1080/03610926.2018.1481977 CR - Amin, M., Akram, M. N., Majid, A., On the estimation of Bell regression model using ridge estimator, Communications in Statistics-Simulation and Computation, (2021), https://doi.org/10.1080/03610918.2020.1870694 CR - Asar, Y., Genç, A., Two-parameter Ridge estimator in the binary logistic regression, Comm. Statist. Simulation Comput., 46(9) (2017), 7088–7099. DOI: 10.1080/03610918.2016.1224348 CR - Bell, E. T., Exponential numbers, The American Mathematical Monthly, 41(7) (1934), 411–419. CR - Bulut, Y. M., Işılar, M., Two parameter Ridge estimator in the inverse Gaussian regression model, Hacettepe Journal of Mathematics and Statistics, 50(3) (2021), 895–910. DOI: 10.15672/hujms.813540 CR - Castellares, F., Ferrari, S. L. P., Lemonte, A. J., On the Bell distribution and its associated regression model for count data, Applied Mathematical Modelling, 56 (2018), 172–185. DOI: 10.1016/j.apm.2017.12.014 CR - Hoerl, A. E., Kennard, R. W., Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 42(1) (1970), 80–86, http://www.jstor.org/stable/1271436 CR - Lipovetsky, S., Two parameter Ridge regression and its convergence o the eventual pairwise model, Math Comput Model, 44 (2006), 304–318. DOI: 10.1016/j.mcm.2006.01.017 CR - Lipovetsky, S., Conklin, W. M., Ridge regression in two-parameter solution, Appl. Stoch. Models Bus. Ind., 21(6) (2005), 525–540. DOI: 10.1002/asmb.603 CR - Mansson, K., On ridge estimators for the negative binomial regression model, Economic Modelling, 29 (2012), 178–184. DOI: 10.1016/j.econmod.2011.09.009 CR - Mansson, K., Shukur, G., A Poisson ridge regression estimator, Econ. Model., 28 (2011), 1475–1481. DOI: 10.1016/j.econmod.2011.02.030 CR - McDonald, G. C., Galarneau, D. I., A monte carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association, 70(350) (1975), 407–416. CR - Myers, R., Montgomery, D., Vining, G., Robinson, T., Generalized Linear Models with Applications in Engineering and the Sciences, Second Edition, Wiley, A John Wiley Sons, Inc., Publication, 2012. CR - Newhouse, J. P., Oman, S. D., An evaluation of ridge estimators, Rand Corporation (p-716-PR), Santa Monica, (1971), 1–16, https://doi.org/10.1080/00949655.2018.1498502 CR - Qasim, M., Kibria, B. M. G., M˚ansson, K., Sjolander, P., A new Poisson Liu regression estimator: method and application, Journal of Applied Statistics, 47(12) (2020), 2258–2271. DOI: 10.1080/02664763.2019.1707485 CR - Qasim, M., Bulut, Y. M., Mansson, K., The Wald-type confidence interval on the mean response function of the Poisson inverse Gaussian Ridge regression, Accepted: October 2023. REVSTAT-Statistical Journal. CR - R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, 2014, http://www.R-project.org/ CR - Scahaefer, R. L., Roi, L. D., Wolfe, R. A., A ridge logistic estimator, Communications in Statistics-Theory and Methods, 13 (1984), 99–113. CR - Toker, S., Ka¸cıranlar, S., On the performance of two parameter ridge estimator under the mean square error criterion, Appl. Math. Comput., 219 (2013), 4718–4728. DOI: 10.1016/j.amc.2012.10.088 UR - https://doi.org/10.31801/cfsuasmas.1397263 L1 - https://dergipark.org.tr/en/download/article-file/3565139 ER -