TY - JOUR T1 - Assessing the contribution of RGB VIs in improving building extraction from RGB-UAV images AU - Nsiah, Richmond Akwasi AU - Mantey, Saviour AU - Ziggah, Yao Yevenyo PY - 2024 DA - June Y2 - 2024 DO - 10.53093/mephoj.1399083 JF - Mersin Photogrammetry Journal JO - MEPHOJ PB - Mersin University WT - DergiPark SN - 2687-654X SP - 9 EP - 21 VL - 6 IS - 1 LA - en AB - Buildings are a fundamental component of the built environment, and accurate information regarding their size, location, and distribution is vital for various purposes. The ever-increasing capabilities of unmanned aerial vehicles (UAVs) have sparked an interest in exploring various techniques to delineate buildings from the very high-resolution images obtained from UAV photogrammetry. However, the limited spectral information in UAV images, particularly the number of bands, can hinder the differentiation between various materials and objects. This setback can affect the ability to distinguish between different materials and objects. To address this limitation, vegetative ındices (VIs) have been employed to enhance the spectral strength of UAV orthophotos, thereby improving building classification. The objective of this study is to evaluate the contribution of four specific VIs: the green leaf index (GLI), red-green-blue vegetation index (RGBVI), visual atmospherically resistant index (VARI), and triangular greenness index (TGI). The significance of this contribution lies in assessing the potential of each VI to enhance building classification. The approach utilized the geographic object-based image analysis (GeoBIA) approach and a random forest classifier. To achieve this aim, five datasets were created, with each dataset comprising the RGB-UAV image and a corresponding RGB VI. The experimental results on the test dataset and a post-classification assessment indicated a general improvement in the classification when the VIs were added to the RGB orthophoto. KW - Building extraction KW - UAV KW - GeoBIA KW - RGB vegetative indices KW - Random forest CR - Schlosser, A. D., Szabó, G., Bertalan, L., Varga, Z., Enyedi, P., & Szabó, S. (2020). Building extraction using orthophotos and dense point cloud derived from visual band aerial imagery based on machine learning and segmentation. Remote Sensing, 12(15), 2397. https://doi.org/10.3390/rs12152397 Hu, Q., Zhen, L., Mao, Y., Zhou, X., & Zhou, G. (2021). Automated building extraction using satellite remote sensing imagery. Automation in Construction, 123, 103509. https://doi.org/10.1016/j.autcon.2020.103509 CR - Li, J., Huang, X., Tu, L., Zhang, T., & Wang, L. (2022). A review of building detection from very high resolution optical remote sensing images. GIScience & Remote Sensing, 59(1), 1199-1225. https://doi.org/10.1080/15481603.2022.2101727 CR - Dai, Y., Gong, J., Li, Y., & Feng, Q. (2017). Building segmentation and outline extraction from UAV image-derived point clouds by a line growing algorithm. International Journal of Digital Earth, 10(11), 1077-1097. https://doi.org/10.1080/17538947.2016.1269841 CR - Temenos, A., Temenos, N., Doulamis, A., & Doulamis, N. (2022). On the exploration of automatic building extraction from RGB satellite images using deep learning architectures based on U-Net. Technologies, 10(1), 19. https://doi.org/10.3390/technologies10010019 CR - Daranagama, S., & Witayangkurn, A. (2021). Automatic building detection with polygonizing and attribute extraction from high-resolution images. ISPRS International Journal of Geo-Information, 10(9), 606. https://doi.org/10.3390/ijgi10090606 CR - Lin, Huertas, & Nevatia. (1994). Detection of buildings using perceptual grouping and shadows. In 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 62-69. https://doi.org/10.1109/CVPR.1994.323811 CR - Jaynes, C. O., Stolle, F., & Collins, R. T. (1994, December). Task driven perceptual organization for extraction of rooftop polygons. In Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, 152-159. https://doi.org/10.1109/ACV.1994.341303 CR - Chen, R., Li, X., & Li, J. (2018). Object-based features for house detection from RGB high-resolution images. Remote Sensing, 10(3), 451. https://doi.org/10.3390/rs10030451 CR - Lu, T., Ming, D., Lin, X., Hong, Z., Bai, X., & Fang, J. (2018). Detecting building edges from high spatial resolution remote sensing imagery using richer convolution features network. Remote Sensing, 10(9), 1496. https://doi.org/10.3390/rs10091496 CR - Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28. https://doi.org/10.1016/j.isprsjprs.2016.03.014 CR - Lefèvre, S., Weber, J., & Sheeren, D. (2007). Automatic building extraction in VHR images using advanced morphological operators. In 2007 Urban Remote Sensing Joint Event, 1-5. https://doi.org/10.1109/URS.2007.371825 CR - Ahmadi, S., Zoej, M. V., Ebadi, H., Moghaddam, H. A., & Mohammadzadeh, A. (2010). Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours. International Journal of Applied Earth Observation and Geoinformation, 12(3), 150-157. https://doi.org/10.1016/j.jag.2010.02.001 CR - Yari, D., Mokhtarzade, M., Ebadi, H., & Ahmadi, S. (2014). Automatic reconstruction of regular buildings using a shape‐based balloon snake model. The Photogrammetric Record, 29(146), 187-205. https://doi.org/10.1111/phor.12060 CR - Huertas, A., & Nevatia, R. (1988). Detecting buildings in aerial images. Computer Vision, Graphics, and Image Processing, 41(2), 131-152. https://doi.org/10.1016/0734-189X(88)90016-3 CR - Peng, J., & Liu, Y. C. (2005). Model and context‐driven building extraction in dense urban aerial images. International Journal of Remote Sensing, 26(7), 1289-1307. https://doi.org/10.1080/01431160512331326675 CR - Sirmacek, B., & Unsalan, C. (2008). Building detection from aerial images using invariant color features and shadow information. In 2008 23rd International Symposium on Computer and Information Sciences, 1-5. https://doi.org/10.1109/ISCIS.2008.4717854 CR - Liow, Y. T., & Pavlidis, T. (1990). Use of shadows for extracting buildings in aerial images. Computer Vision, Graphics, and Image Processing, 49(2), 242-277. https://doi.org/10.1016/0734-189X(90)90139-M CR - Irvin, R. B., & McKeown, D. M. (1989). Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE Transactions on Systems, Man, and Cybernetics, 19(6), 1564-1575. https://doi.org/10.1109/21.44071 CR - Wu, G., Shao, X., Guo, Z., Chen, Q., Yuan, W., Shi, X., ... & Shibasaki, R. (2018). Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks. Remote Sensing, 10(3), 407. https://doi.org/10.3390/rs10030407 CR - Kokeza, Z., Vujasinović, M., Govedarica, M., Milojević, B., & Jakovljević, G. (2020). Automatic building footprint extraction from UAV images using neural networks. Geodetski Vestnik, 64(04), 545-561. https://doi.org/10.15292/geodetski-vestnik.2020.04.545-561 CR - Norman, M., Shahar, H. M., Mohamad, Z., Rahim, A., Mohd, F. A., & Shafri, H. Z. M. (2021). Urban building detection using object-based image analysis (OBIA) and machine learning (ML) algorithms. In IOP Conference Series: Earth and Environmental Science, 620(1), 012010. https://doi.org/10.1088/1755-1315/620/1/012010 CR - Comert, R., & Kaplan, O. (2018). Object based building extraction and building period estimation from unmanned aerial vehicle data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(3), 71-76. https://doi.org/10.5194/isprs-annals-IV-3-71-2018 CR - Aminipouri, M. (2009). Object-oriented analysis of very high resolution orthophotos for estimating the population of slum areas, case of Dar-Es-Salaam, Tanzania [Master's thesis, University of Twente]. CR - Guo, Z., & Du, S. (2017). Mining parameter information for building extraction and change detection with very high-resolution imagery and GIS data. GIScience & Remote Sensing, 54(1), 38-63. https://doi.org/10.1080/15481603.2016.1250328 CR - Benarchid, O., Raissouni, N., El Adib, S., Abbous, A., Azyat, A., Achhab, N. B., ... & Chahboun, A. (2013). Building extraction using object-based classification and shadow information in very high resolution multispectral images, a case study: Tetuan, Morocco. Canadian Journal on Image Processing and Computer Vision, 4(1), 1-8. CR - Frishila, A. A., & Kamal, M. (2019). The effectiveness of spectral features for building extraction using geographic object-based image analysis (GEOBIA). The 40th Asian Conference on Remote Sensing (ACRS 2019), 1-10. CR - Hossain, M. D., & Chen, D. (2022). A hybrid image segmentation method for building extraction from high-resolution RGB images. ISPRS Journal of Photogrammetry and Remote Sensing, 192, 299-314. https://doi.org/10.1016/j.isprsjprs.2022.08.024 CR - Dornaika, F., Moujahid, A., El Merabet, Y., & Ruichek, Y. (2016). Building detection from orthophotos using a machine learning approach: An empirical study on image segmentation and descriptors. Expert Systems with Applications, 58, 130-142. https://doi.org/10.1016/j.eswa.2016.03.024 CR - Argyridis, A., & Argialas, D. P. (2016). Building change detection through multi-scale GEOBIA approach by integrating deep belief networks with fuzzy ontologies. International Journal of Image and Data Fusion, 7(2), 148-171. https://doi.org/10.1080/19479832.2016.1158211 CR - Davydova, K., Cui, S., & Reinartz, P. (2016). Building footprint extraction from digital surface models using neural networks. In Image and Signal Processing for Remote Sensing XXII, 10004, 187-196. https://doi.org/10.1117/12.2240727 CR - Li, Y., Zhu, L., Shimamura, H., & Tachibanab, K. (2010). An integrated system on large scale building extraction from DSM. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 35-39. CR - Singh, D., Maurya, R., Shukla, A. S., Sharma, M. K., & Gupta, P. R. (2012). Building extraction from very high resolution multispectral images using NDVI based segmentation and morphological operators. In 2012 Students Conference on Engineering and Systems, 1-5. https://doi.org/10.1109/SCES.2012.6199034 CR - Öztürk, M. Y., & Çölkesen, İ. (2021). The impacts of vegetation indices from UAV-based RGB imagery on land cover classification using ensemble learning. Mersin Photogrammetry Journal, 3(2), 41-47. https://doi.org/10.53093/mephoj.943347 CR - Kucharczyk, M., Hay, G. J., Ghaffarian, S., & Hugenholtz, C. H. (2020). Geographic object-based image analysis: a primer and future directions. Remote Sensing, 12(12), 2012. https://doi.org/10.3390/rs12122012 CR - Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274-2282. https://doi.org/10.1109/TPAMI.2012.120 CR - Liao, N., Liu, H., Li, C., Ren, X., & Guo, B. (2022). Simple linear ıterative clustering with efficiency. Advances in Intelligent Information Hiding and Multimedia Signal Processing, 1, 109-117. https://doi.org/10.1007/978-981-19-1057-9_11 CR - Zhang, H., & Zhu, Y. (2019). Kslic: K-mediods clustering based simple linear iterative clustering. In Chinese Conference on Pattern Recognition and Computer Vision (PRCV), 519-529. https://doi.org/10.1007/978-3-030-31723-2_44 CR - Sibaruddin, H. I., Zulhaidi, H., Shafri, M., Pradhan, B., & Haron, N. A. (2018). UAV-based approach to extract topographic and as-built information by utilising the OBIA technique. Journal of Geosciences and Geomatics, 6(3), 103-123. https://doi.org/10.12691/jgg-6-3-2 CR - Norman, M., Shahar, H. M., Mohamad, Z., Rahim, A., Mohd, F. A., & Shafri, H. Z. M. (2021). Urban building detection using object-based image analysis (OBIA) and machine learning (ML) algorithms. IOP Conference Series: Earth and Environmental Science, 620(1), 1-11. https://doi.org/10.1088/1755-1315/620/1/012010 CR - Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. CR - Kumar, A., & Sinha, N. (2020). Classification of forest cover type using random forests algorithm. In Advances in Data and Information Sciences: Proceedings of ICDIS 2019, 94, 395-402. https://doi.org/10.1007/978-981-15-0694-9_37 CR - Xiao, Y., Huang, W., & Wang, J. (2020). A random forest classification algorithm based on dichotomy rule fusion. In 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), 182-185. https://doi.org/10.1109/ICEIEC49280.2020.9152236 CR - Jiang, J., Cai, W., Zheng, H., Cheng, T., Tian, Y., Zhu, Y., ... & Yao, X. (2019). Using digital cameras on an unmanned aerial vehicle to derive optimum color vegetation indices for leaf nitrogen concentration monitoring in winter wheat. Remote Sensing, 11(22), 2667. https://doi.org/10.3390/rs11222667 CR - Hunt Jr, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S., Perry, E. M., & Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103-112. https://doi.org/10.1016/j.jag.2012.07.020 CR - Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., ... & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79-87. https://doi.org/10.1016/j.jag.2015.02.012 CR - Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9 CR - Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65-70. https://doi.org/10.1080/10106040108542184 CR - Kaur, R., & Pandey, P. (2022). A review on spectral indices for built-up area extraction using remote sensing technology. Arabian Journal of Geosciences, 15(5), 391. https://doi.org/10.1007/s12517-022-09688-x CR - Tsai, Y. H., Stow, D., & Weeks, J. (2011). Comparison of object-based image analysis approaches to mapping new buildings in Accra, Ghana using multi-temporal QuickBird satellite imagery. Remote Sensing, 3(12), 2707-2726. https://doi.org/10.3390/rs3122707 UR - https://doi.org/10.53093/mephoj.1399083 L1 - https://dergipark.org.tr/en/download/article-file/3573222 ER -