TY - JOUR T1 - Approximate Analytic Solution for Fractional Differential Equations with a Generalized Fractional Derivative of Caputo-Type AU - Alomarı, Abedel-karrem AU - Alsleeby, Anwar PY - 2023 DA - December DO - 10.55549/epstem.1403008 JF - The Eurasia Proceedings of Science Technology Engineering and Mathematics JO - EPSTEM PB - ISRES Publishing WT - DergiPark SN - 2602-3199 SP - 50 EP - 58 VL - 25 LA - en AB - This paper introduces the analytic series solution of the differential equation with fractional Caputo-type derivative including two parameters using the homotopy analysis method (HAM). The main properties of the fractional derivative with two parameters are illustrated. The standard HAM converges for a short domain, so we modify the method to overcome this issue by dividing the domain into finite subintervals and applying the method to each one. The initial conditions in each subinterval can be obtained from the previous one In this way, a continuous piecewise function that converges to the exact solution can be constructed. The effect of each fractional parameter on the solution behaviors is presented in figures and tables. Several examples are presented to verify the validity of the algorithm. A comparison with the exact solution in the case of integer derivative and with the Adaptive predictor corrected algorithm in the case of fractional one demonstrates the efficiency of the method. KW - Fractional calculus KW - Homotopy analysis method KW - Riccati equation CR - Almeida, R., Malinowska, A. B., & Odzijewicz, T. (2016). Fractional differential equations with dependence on the Caputo–Katugampola derivative. Journal of Computational and Nonlinear Dynamics,11(6), 061017 CR - Cang, J., Tan, Y., Xu, H., & Liao, S. J. (2009). Series solutions of non-linear Riccati differential equations with fractional order. Chaos, Solitons & Fractals, 40(1), 1-9. ‏ Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Volume 204). Elsevier.‏ UR - https://doi.org/10.55549/epstem.1403008 L1 - https://dergipark.org.tr/en/download/article-file/3591318 ER -