TY - JOUR T1 - Development of elbow rehabilitation device with iterative learning control and internet of things AU - Demirsoy, Mert Süleyman AU - Hamida El Naser, Yusuf AU - Sarıkaya, Muhammed Salih AU - Peker, Nur Yasin AU - Kutlu, Mustafa PY - 2024 DA - April Y2 - 2024 DO - 10.31127/tuje.1409728 JF - Turkish Journal of Engineering JO - TUJE PB - Murat YAKAR WT - DergiPark SN - 2587-1366 SP - 370 EP - 379 VL - 8 IS - 2 LA - en AB - In this study, we present a novel approach for rehabilitation devices through the design of an active elbow joint orthosis, inspired by the fundamental principles of robotic exoskeletons. The device not only enables home-based usage but also facilitates the transmission of exercise data from patients to physiotherapists via the Internet of Things (IoT) device. This approach offers the possibility of increased therapy sessions for each patient while allowing physiotherapists access to data for real-time or subsequent analyses, thereby establishing a database. This permits a single physiotherapist to manage multiple patients more effectively. The developed mobile application within this research incorporates a distinct entry interface for both patients and physiotherapists. Maximum force and position values generated during each exercise period are displayed within the application. The device enables active exercise with a single degree of freedom at the elbow joint and is equipped with force sensors to ensure safety against potential high-shear forces. Furthermore, it can be worn on the upper extremity using adjustable Velcro straps to accommodate users with varying arm circumferences. Specifically, this system amalgamates two primary components: a microcontroller operating control algorithms and IoT technology, and a smartphone application containing interfaces for physiotherapists and users undergoing therapy. The control design of the device employs a P-Type Iterative Learning Control (ILC) due to periodic exercise movements, reducing the error norm by approximately 20% during each exercise period (excluding the initial period). The controller consistently diminishes error values with each iteration, ultimately converging to zero. Throughout an exercise lasting around 3 minutes, the average error norm is recorded as 0.229⁰. In essence, this study presents a pioneering approach that sets itself apart from other research by minimizing shear forces and errors through a specialized controller, all while enabling remote, home-based rehabilitation under expert supervision. KW - Iterative learning control KW - Internet of things KW - Exoskeleton KW - Home-based rehabilitation CR - Alataş, Ö. D., & Gökçek, K. (2021). Pandemi döneminde ve pandemi öncesi dönemde acil servise başvuran hastaların karşılaştırılması. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 8(3), 195-198. https://doi.org/10.47572/muskutd.844037 CR - Yildiz, M., & Kutlu, M. (2019). Üst Ekstremite İnme Rehabilitasyonu İçin Ev Bazlı Sistem Tasarımı. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 1-4. https://doi.org/10.1109/EBBT.2019.8741954 CR - Riener, R., Nef, T., & Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, 43, 2-10. https://doi.org/10.1007/BF02345116 CR - Ersin, Ç., & Yaz, M. (2019). Wearable exoskeleton: A review. Electronic Letters on Science and Engineering, 15(1), 1-11. CR - Yang, C. J., Niu, B., & Chen, Y. (2005). Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 467-472. https://doi.org/10.1109/AIM.2005.1511026 CR - Ball, S. J., Brown, I. E., & Scott, S. H. (2007). MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. In 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1-6. https://doi.org/10.1109/AIM.2007.4412446 CR - Vanderniepen, I., Van Ham, R., Van Damme, M., Versluys, R., & Lefeber, D. (2009). Orthopaedic rehabilitation: A powered elbow orthosis using compliant actuation. In 2009 IEEE International Conference on Rehabilitation Robotics, 172-177. https://doi.org/10.1109/ICORR.2009.5209483 CR - Song, Z., Guo, S., Pang, M., Zhang, S., Xiao, N., Gao, B., & Shi, L. (2014). Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. Journal of Medical and Biological Engineering, 34(2), 188-196. CR - Ripel, T., Krejsa, J., Hrbacek, J., & Cizmar, I. (2014). Active elbow orthosis. International Journal of Advanced Robotic Systems, 11(9), 143. https://doi.org/10.5772/58874 CR - Crea, S., Cempini, M., Mazzoleni, S., Carrozza, M. C., Posteraro, F., & Vitiello, N. (2017). Phase-II clinical validation of a powered exoskeleton for the treatment of elbow spasticity. Frontiers in Neuroscience, 11, 261. https://doi.org/10.3389/fnins.2017.00261 CR - Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M. A., & Urizar, M. (2021). Design and experimental characterization of l-CADEL v2, an assistive device for elbow motion. Sensors, 21(15), 5149. https://doi.org/10.3390/s21155149 CR - Wu, Y. C., Shao, Z. D., & Kao, H. K. (2021). Wearable Device for Residential Elbow Joint Rehabilitation with Voice Prompts and Tracking Feedback APP. Applied Sciences, 11(21), 10225. https://doi.org/10.3390/app112110225 CR - Said, R. R., Yong, W. Q., Heyat, M. B. B., Ali, L., Qiang, S., Ali, A., ... & Wu, Z. (2022). Design of a smart elbow brace as a home-based rehabilitation device. Computational Intelligence and Neuroscience, 3754931. https://doi.org/10.1155/2022/3754931 CR - Erin, K., Bayılmış, C., & Boru, B. (2021). İvmeölçer ve Nesnelerin İnterneti Tabanlı Gerçek Zamanlı İnsan Aktivite Tespiti. Academic Platform Journal of Engineering and Science, 9(1), 194-198. https://doi.org/10.21541/apjes.809777 CR - Freeman, C. T., Rogers, E., Hughes, A. M., Burridge, J. H., & Meadmore, K. L. (2012). Iterative learning control in health care: Electrical stimulation and robotic-assisted upper-limb stroke rehabilitation. IEEE Control Systems Magazine, 32(1), 18-43. https://doi.org/10.1109/MCS.2011.2173261 CR - Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17-39. https://doi.org/10.1016/j.comnet.2018.07.017 CR - Hassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M., & Ahmed, A. S. (2020). Internet of Things and its applications: A comprehensive survey. Symmetry, 12(10), 1674. https://doi.org/10.3390/sym12101674 CR - Hamdan, S., Ayyash, M., & Almajali, S. (2020). Edge-computing architectures for internet of things applications: A survey. Sensors, 20(22), 6441. https://doi.org/10.3390/s20226441 CR - Rebelo, R. M. L., Pereira, S. C. F., & Queiroz, M. M. (2022). The interplay between the Internet of things and supply chain management: Challenges and opportunities based on a systematic literature review. Benchmarking: An International Journal, 29(2), 683-711. https://doi.org/10.1108/BIJ-02-2021-0085 CR - Hashim, H. S., Hassan, Z. B., & Drus, S. B. M. (2022). Internet of Things: A Systematic Literature Review. Informatica, 46(8), 135-146. https://doi.org/10.31449/inf.v46i8.4311 CR - Demirsoy, M. S., Kutlu, M. Ç., & Mansour, M. (2022). PID kontrollü IoT haberleşme ile android tabanlı egsersiz takibi. Journal of Smart Systems Research, 3(2), 70-80. UR - https://doi.org/10.31127/tuje.1409728 L1 - https://dergipark.org.tr/en/download/article-file/3619617 ER -