TY - JOUR T1 - Sütün kaynatılmasının süt miR-191 düzeyine etkisinin araştırılması TT - Investigation of the effect of boiling on the level of milk miR-191 AU - Pirim, Dilek AU - Bağcı, Fatih Atilla PY - 2024 DA - September Y2 - 2024 DO - 10.29050/harranziraat.1409969 JF - Harran Tarım ve Gıda Bilimleri Dergisi PB - Harran University WT - DergiPark SN - 2587-1358 SP - 480 EP - 488 VL - 28 IS - 3 LA - tr AB - MikroRNA'lar (miRNA'lar), gen anlatımının düzenlenmesinde etkin rol oynayan ~22 bp uzunluğunda küçük, kodlanmayan RNA dizileridir. Son yıllarda yapılan araştırmalarda inek sütünde bol miktarda miRNA bulunduğu tespit edilmiş ve inek sütü miRNA’larının gıda kalitesinde biyobelirteç olarak kullanım potansiyellerine yönelik bulgular elde edilmiştir. Ayrıca, güncel araştırmalar beslenme yoluyla inek sütü miRNA’larının insana transfer olarak önemli bir biyoaktif besin komponenti olabileceğini göstermektedir. Süt ve süt ürünlerinde üretim aşamalarında bozunmadan kalan inek sütü miRNA'larının insanların dolaşım sistemine geçerek farklı insan hastalıkları ile ilişkili önemli yolaklara etki edebileceği düşünülmektedir. Bu sebepten süt ve süt ürünlerinin miRNA içeriklerinin belirlenmesi önemlidir ve bu konuda güncel literatürde önemli bir boşluk olduğu gözlenmektedir. Bu çalışmada, literatürden insan homolog sekansına sahip ve inek sütünde bol miktarda bulunan miR-191’in kaynatma aşaması sonrası içme sütündeki miktarındaki değişiklik araştırılmıştır. Bu kapsamda süt örnekleri (çiğ süt ve pastörize süt) 100°C’de kaynatılarak örneklerden total RNA izolasyonu gerçekleştirilmiş ve elde edilen RNA’lardaki miR-191 miktarı RT-qPCR yöntemi ile analiz edilmiştir. Literatürde içme sütünün üretiminde kullanılan homojenizasyon ve pastörizasyon işlemlerinin miRNA spesifik farklı etkilere sebep olduğu gözlenmiştir. Gerçekleştirilen işlemler sonucunda literatüre uyumlu biçimde miR-191 miktarında kaynatılmış çiğ sütte %95.8 oranında (p<0.0001) ve kaynatılmış pastörize sütte %66.4 oranında (p=0.001) azalma gözlemlenmiştir. Bunun yanında çiğ süt ve pastörize sütte analiz edilen miR-191 için elde edilen CT değerleri arasında istatistiksel olarak anlamlı bir farklılık olduğu gözlenmiştir (p<0.0001). Çalışmamızın sonucu, sütün kaynatılmasının süt miRNA içeriği üzerindeki etkilerine ilişkin ön veriler ortaya koyarak işleme adımlarının süt miRNA bileşimi üzerine miRNA spesifik etkisinin olduğunu önemle vurgulamaktadır. KW - miRNA KW - çiğ süt KW - pastörize süt KW - kaynamış süt KW - RT-qPCR KW - miR-191 N2 - MicroRNAs (miRNAs) are small non-coding RNA sequences ~22 bp in length that play an active role in cellular processes. Recent studies have identified miRNA abundance in cow’s milk, highlighting their nutritional impact and their potential utilization as biomarkers of food quality. However, current research suggests that dietary intake of cow’s milk miRNAs may transfer to humans and have nutritional relevance for human health by entering human circulation and affecting important pathways associated with human diseases. Therefore, it is crucial to determine the miRNA content in milk and dairy products. The miR-191 has a similar sequence in cows and humans, and it has been previously shown to abundantly exist in cow milk. Here, we aimed to investigate the effects of boiling to the miR-191 levels in milk. Total RNA was isolated from raw and milk boiled at 100°C, and miR-191 levels in raw and boiled milk were analyzed by RT-qPCR method. Previous research reported that homogenization and pasteurization processes used in milk production stages have miRNA-specific distinct effects. After heat treatments, the amount of miR-191 was reduced by 95.8% (p<0.0001) in boiled raw milk and 66.4% (p=0.001) in boiled pasteurized milk compared to pasteurized milk. Meanwhile, we observed a statistically significant difference (p<0.0001) in the CT values obtained by quantification of miR-191 in raw and pasteurized milk. The results of our study present preliminary data for the effects of boiling milk on the milk miRNA content and point out the significance of miRNA-specific effects of milk processing steps on milk miRNA composition. CR - Abou el qassim, L., Le Guillou, S., & Royo, L. J. (2022). Variation of miRNA Content in Cow Raw Milk Depending on the Dairy Production System. International Journal of Molecular Sciences, 23(19), Article 19. DOI:https://doi.org/10.3390/ijms231911681 CR - Abou el qassim, L., Martínez, B., Rodríguez, A., Dávalos, A., López de las Hazas, M.-C., Menéndez Miranda, M., & Royo, L. J. (2023). Effects of Cow’s Milk Processing on MicroRNA Levels. Foods, 12(15), Article 15. DOI:https://doi.org/10.3390/foods12152950 CR - Arslan, Ö., Sevı̇m, A., Güler, D., & Saner, G. (2020). İzmir İlinde Tüketicilerin Çiğ Süt Satın Alma Kararlarını Etkileyen Faktörlerin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(3), Article 3. DOI:https://doi.org/10.17097/ataunizfd.694829 CR - Ashirbekov, Y., Abaildayev, A., Omarbayeva, N., Botbayev, D., Belkozhayev, A., Askandirova, A., Neupokoyeva, A., Utegenova, G., Sharipov, K., & Aitkhozhina, N. (2020). Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ, 8, e10494. DOI:https://doi.org/10.7717/peerj.10494 CR - Baier, S. R., Nguyen, C., Xie, F., Wood, J. R., & Zempleni, J. (2014). MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. The Journal of Nutrition, 144(10), 1495–1500. DOI:https://doi.org/10.3945/jn.114.196436 CR - Benmoussa, A., Laugier, J., Beauparlant, C. J., Lambert, M., Droit, A., & Provost, P. (2020). Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. Journal of Dairy Science, 103(1), 16–29. DOI:https://doi.org/10.3168/jds.2019-16880 CR - Cieślik, M., Bryniarski, K., Nazimek, K., Cieślik, M., Bryniarski, K., & Nazimek, K. (2023). Dietary and orally-delivered miRNAs: Are they functional and ready to modulate immunity? AIMS Allergy and Immunology, 7(1), Article allergy-07-01-008. DOI:https://doi.org/10.3934/Allergy.2023008 CR - Howard, K. M., Jati Kusuma, R., Baier, S. R., Friemel, T., Markham, L., Vanamala, J., & Zempleni, J. (2015). Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. Journal of Agricultural and Food Chemistry, 63(2), 588–592. DOI:https://doi.org/10.1021/jf505526w CR - Izumi, H., Kosaka, N., Shimizu, T., Sekine, K., Ochiya, T., & Takase, M. (2012). Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of Dairy Science, 95(9), 4831–4841. DOI:https://doi.org/10.3168/jds.2012-5489 CR - Izumi, H., Tsuda, M., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., Namba, K., & Takeda, Y. (2015). Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 98(5), 2920–2933. DOI:https://doi.org/10.3168/jds.2014-9076 CR - Kirchner, B., Pfaffl, M. W., Dumpler, J., von Mutius, E., & Ege, M. J. (2016). microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. The Journal of Allergy and Clinical Immunology, 137(6), 1893-1895.e13. DOI:https://doi.org/10.1016/j.jaci.2015.10.028 CR - Li, W., Li, W., Wang, X., Zhang, H., Wang, L., & Gao, T. (2022). Comparison of miRNA profiles in milk-derived extracellular vesicles and bovine mammary glands. International Dairy Journal, 134, 105444. DOI:https://doi.org/10.1016/j.idairyj.2022.105444 CR - Li, H., Du, M., Xu, W., & Wang, Z. (2021). MiR-191 downregulation protects against isoflurane-induced neurotoxicity through targeting BDNF. Toxicology Mechanisms and Methods, 31(5), 367–373. DOI:https://doi.org/10.1080/15376516.2021.1886211 CR - Lichołai, S., Studzińska, D., Plutecka, H., Gubała, T., Szczeklik, W., & Sanak, M. (2021). MiR-191 as a Key Molecule in Aneurysmal Aortic Remodeling. Biomolecules, 11(11), 1611. DOI:https://doi.org/10.3390/biom11111611 CR - Melnik, B. C., John, S. M., & Schmitz, G. (2014). Milk: An exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? Journal of Translational Medicine, 12, 43. DOI:https://doi.org/10.1186/1479-5876-12-43 CR - Melnik, B. C., & Schmitz, G. (2017). MicroRNAs: Milk’s epigenetic regulators. Best Practice & Research. Clinical Endocrinology & Metabolism, 31(4), 427–442. DOI:https://doi.org/10.1016/j.beem.2017.10.003 CR - Melnik, B. C., Weiskirchen, R., & Schmitz, G. (2022). Milk exosomal microRNAs: Friend or foe?—a narrative review. ExRNA, 4(0). DOI:https://doi.org/10.21037/exrna-22-5 CR - Nagpal, N., & Kulshreshtha, R. (2014). miR-191: An emerging player in disease biology. Frontiers in Genetics, 5, 99. DOI:https://doi.org/10.3389/fgene.2014.00099 CR - Oh, S., Park, M. R., Son, S. J., & Kim, Y. (2015). Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks. Korean Journal for Food Science of Animal Resources, 35(4), 459–465. DOI:https://doi.org/10.5851/kosfa.2015.35.4.459 CR - Polioudakis, D., Abell, N. S., & Iyer, V. R. (2015). MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes. PLOS ONE, 10(5), e0126535. CR - OI:https://doi.org/10.1371/journal.pone.0126535 CR - Rani, P., Yenuganti, V. R., Shandilya, S., Onteru, S. K., & Singh, D. (2017). miRNAs: The hidden bioactive component of milk. Trends in Food Science & Technology, 65, 94–102. DOI:https://doi.org/10.1016/j.tifs.2017.05.007 CR - Ray, J., Haughey, C., Hoey, C., Jeon, J., Murphy, R., Dura-Perez, L., McCabe, N., Downes, M., Jain, S., Boutros, P. C., Mills, I. G., & Liu, S. K. (2020). miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Letters, 473, 107–117. DOI:https://doi.org/10.1016/j.canlet.2019.12.025 CR - Sadri, M., Shu, J., Kachman, S. D., Cui, J., & Zempleni, J. (2020). Milk exosomes and miRNA cross the placenta and promote embryo survival in mice. Reproduction (Cambridge, England), 160(4), 501–509. DOI:https://doi.org/10.1530/REP-19-0521 CR - Sevim, A., Arslan, Ö., Güler, D., & Saner, G. (2021). Tüketicilerin çiğ süt satın alma eğilimlerinin saptanması: İzmir ili Örneği. Mediterranean Agricultural Sciences, 34(1), Article 1. DOI:https://doi.org/10.29136/mediterranean.655574 CR - Tian, F., Yu, C., Wu, M., Wu, X., Wan, L., & Zhu, X. (2019). MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Proliferation, 52(5), e12635. DOI:https://doi.org/10.1111/cpr.12635 CR - Tremonte, P., Tipaldi, L., Succi, M., Pannella, G., Falasca, L., Capilongo, V., Coppola, R., & Sorrentino, E. (2014). Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality. Journal of Dairy Science, 97(6), 3314–3320. DOI:https://doi.org/10.3168/jds.2013-7744 CR - Wang, L., Shui, X., Zhang, M., Mei, Y., Xia, Y., Lan, G., Hu, L., Gan, C.-L., Tian, Y., Li, R., Gu, X., Zhang, T., Chen, D., & Lee, T. H. (2022). MiR-191-5p Attenuates Tau Phosphorylation, Aβ Generation, and Neuronal Cell Death by Regulating Death-Associated Protein Kinase 1. ACS Chemical Neuroscience, 13(24), 3554–3566. DOI:https://doi.org/10.1021/acschemneuro.2c00423 CR - Winter, J., & Diederichs, S. (2011). Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology, 8(6), 1149–1157. DOI:https://doi.org/10.4161/rna.8.6.17665 CR - Yu, J., Zhou, A., & Li, Y. (2022). Clinical value of miR-191-5p in predicting the neurological outcome after out-of-hospital cardiac arrest. Irish Journal of Medical Science, 191(4), 1607–1612. DOI:https://doi.org/10.1007/s11845-021-02745-6 CR - Zeng, B., Chen, T., Luo, J.-Y., Zhang, L., Xi, Q.-Y., Jiang, Q.-Y., Sun, J.-J., & Zhang, Y.-L. (2021). Biological Characteristics and Roles of Noncoding RNAs in Milk-Derived Extracellular Vesicles. Advances in Nutrition, 12(3), 1006–1019. DOI:https://doi.org/10.1093/advances/nmaa124 CR - Zhang, X.-F., Li, K., Gao, L., Li, S.-Z., Chen, K., Zhang, J.-B., Wang, D., Tu, R.-F., Zhang, J.-X., Tao, K.-X., Wang, G., & Zhang, X.-D. (2014). miR-191 promotes tumorigenesis of human colorectal cancer through targeting C/EBPβ. Oncotarget, 6(6), 4144–4158. DOI:https://doi.org/10.18632/oncotarget.2864 CR - Zhang, Y., Xu, Q., Hou, J., Huang, G., Zhao, S., Zheng, N., & Wang, J. (2022). Loss of bioactive microRNAs in cow’s milk by ultra-high-temperature treatment but not by pasteurization treatment. Journal of the Science of Food and Agriculture, 102(7), 2676–2685. DOI:https://doi.org/10.1002/jsfa.11607 CR - Zheng, Y., Yang, Z., Jin, C., Chen, C., & Wu, N. (2021). Hsa-miR-191-5p inhibits replication of human immunodeficiency virus type 1 by downregulating the expression of NUP50. Archives of Virology, 166(3), 755–766. DOI:https://doi.org/10.1007/s00705-020-04899-7 CR - Pan, L., Liu, W., Zhao, H., Chen, B., & Yue, X. (2023). MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine, 31(6), 2251–2265. DOI:https://doi.org/10.3233/THC-230217 CR - Sharma, S., Nagpal, N., Ghosh, P. C., & Kulshreshtha, R. (2017). P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA (New York, N.Y.), 23(8), 1237–1246. DOI:https://doi.org/10.1261/rna.060657.117 UR - https://doi.org/10.29050/harranziraat.1409969 L1 - https://dergipark.org.tr/en/download/article-file/3620644 ER -