TY - JOUR T1 - OPTIMIZATION OF THE SYNERGISTIC ANTIOXIDANT EFFECT OF SELECTED PHENOLIC COMPOUNDS (GALLIC ACID, ROSMARINIC ACID and CAFFEIC ACID) AND INVESTIGATION OF THEIR ABILITY TO PREVENT FORMATION OF DNA BASE DAMAGE TT - SEÇİLMİŞ FENOLİK BİLEŞİKLERİN (GALLİK ASİT, ROSMARİNİK ASİT ve KAFEİK ASİT) SİNERJİSTİK ANTİOKSİDAN ETKİSİNİN OPTİMİZASYONU VE DNA BAZ HASARI OLUŞUMUNU ÖNLEME YETENEKLERİNİN ARAŞTIRILMASI AU - Şahin, Saliha AU - Bayaçlı, Gizem AU - Patır, İlkyaz AU - Karkar, Büşra PY - 2024 DA - October Y2 - 2024 DO - 10.15237/gida.GD24012 JF - Gıda JO - GIDA PB - The Association of Food Technology WT - DergiPark SN - 1300-3070 SP - 777 EP - 790 VL - 49 IS - 5 LA - en AB - Considering the areas of use of phenolic compounds, it is important to determine the concentrations at which they show synergistic and antagonistic interactions for their integration into various systems and their correct use. In this study, the synergistic interaction concentration of rosmarinic acid, gallic acid, and caffeic acid was determined by Folin–Ciocalteu and FRAP methods. The central composite design–response surface methodology was used to determine the optimum concentration for synergistic interaction. As a result of the optimization, caffeic acid, rosmarinic acid, and gallic acid showed synergistic interaction at 7.87 μM, 6.75 μM and 9.42 μM concentrations for Folin–Ciocalteu method; 8.03 μM, 9.34 μM and 6.00 μM concentration for FRAP method respectively. The capacity of phenolic compounds to prevent the formation of DNA base damage products was evaluated by GC–MS/MS. As a result, the synergistic concentration of three phenolics reduces the DNA damage products at 37.17% (FOLIN) and 40.17% (FRAP). KW - Antioxidant KW - DNA oxidation KW - optimization KW - phenolic KW - synergistic effect N2 - Fenolik bileşiklerin kullanım alanları düşünüldüğünde, sinerjik ve antagonistik etkileşim gösterdikleri konsantrasyonların belirlenmesi, çeşitli sistemlere entegrasyonları ve doğru kullanımları için önemlidir. Bu çalışmada, rosmarinik asit, gallik asit ve kafeik asidin sinerjik etkileşim konsantrasyonu Folin–Ciocalteu ve FRAP yöntemleri ile belirlenmiştir. Sinerjik etkileşim için optimum konsantrasyonu belirlemek üzere merkezi kompozit dizayn–yanıt yüzeyi metodolojisi kullanılmıştır. Optimizasyon sonucunda kafeik asit, rosmarinik asit ve gallik asit Folin–Ciocalteu yöntemi için sırasıyla 7.87 μM, 6.75 μM ve 9.42 μM konsantrasyonlarında; FRAP yöntemi için 8.03 μM, 9,34 μM ve 6.00 μM konsantrasyonlarında sinerjik etkileşim göstermiştir. Fenolik bileşiklerin DNA baz hasarı ürünlerinin oluşumunu önleme kapasitesi GC–MS/MS ile değerlendirilmiştir. Sonuç olarak, üç fenoliğin sinerjik konsantrasyonu DNA hasar ürünlerini %37.17 (FOLIN) ve %40.17 (FRAP) oranında azaltmaktadır. CR - Aklan, A., Aybastıer, Ö. (2024). Characterization of Cichorium intybus L. extract in preventing oxidative DNA base damage using Gas Chromatography–Tandem Mass Spectrometry (GC–MS/MS). Analytical Letters, 1–10. https://doi.org/10.1080/00032719.2024.2372675 CR - Andrés, C.M.C., Pérez de la Lastra, J.M., Juan, C.A., Plou, F.J., Pérez-Lebeña, E. (2023). Polyphenols as Antioxidant/Pro-Oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Processes, 2023, 11(9), 2771. https://doi.org/ 10.3390/PR11092771 CR - Aybastıer, Ö., Demir, C. (2021). Optimization and validation of ultrasensitive GC–MS/MS method to measure oxidatively induced DNA damage products and role of antioxidants in oxidation mechanism. Journal of Pharmaceutical and Biomedical Analysis, 200, 114068. https://doi.org/ 10.1016/J.JPBA.2021.114068 CR - Berker, K.I., Güçlü, K., Demirata, B., Apak, R. (2010). A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytical Methods, 2(11), 1770–1778. https://doi.org/10.1039/C0AY00245C CR - Buonocore, G., Perrone, S., Tataranno, M.L. (2010). Oxygen toxicity: Chemistry and biology of reactive oxygen species. Seminars in Fetal and Neonatal Medicine, 15(4), 186–190. https://doi.org/10.1016/j.siny.2010.04.003 CR - Ceylan, D., Tuna, G., Kirkali, G., Tunca, Z., Can, G., Arat, H.E., Kant, M., Dizdaroglu, M., Özerdem, A. (2018). Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair, 65, 64–72. https://doi.org/10.1016/ J.DNAREP.2018.03.006 CR - Chandrasekara, A., Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226–237. https://doi.org/ 10.1016/j.jff.2011.11.001 CR - Dawbaa, S., Aybastıer, Ö., Demir, C. (2017). Ultrasensitive determination of DNA oxidation products by gas chromatography–tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1051, 84–91. https://doi.org/10.1016/j.jchromb.2017.03.014 CR - De Guzman, R., Tang, H., Salley, S., Ng, K.Y.S. (2009). Synergistic effects of antioxidants on the oxidative stability of soybean oil- and poultry fat-based biodiesel. JAOCS, Journal of the American Oil Chemists’ Society, 86(5), 459–467. https://doi.org/ 10.1007/s11746-009-1373-8 CR - Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H. (2002). Free radical-induced damage to DNA: Mechanisms and measurement. Free Radical Biology and Medicine, 32(11), 1102–1115. https://doi.org/10.1016/S0891-5849(02)00826-2 CR - Dreher, D., Junod, A.F. (1996). Role of oxygen free radicals in cancer development. European Journal of Cancer, 32(1), 30–38. https://doi.org/10.1016/0959-8049(95)00531-5 CR - Ferguson, L.R. (2001). Role of plant polyphenols in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 89–111. CR - Hajimehdipoor, H., Shahrestani, R., Shekarchi, M. (2014). Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Research Journal of Pharmacognosy, 1(3), 35–40. CR - Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073 CR - Irwandi, J., Che Man, Y.B., Kitts, D.D., Bakar, J., Jinap, S. (2000). Synergies between plant antioxidant blends in preventing peroxidation reactions in model and food oil systems. Journal of the American Oil Chemists' Society, 77, 945–951. CR - Jiang, D., Rusling, J.F. (2019). Oxidation chemistry of DNA and p53 tumor suppressor gene. ChemistryOpen, 8(3), 252. https://doi.org/ 10.1002/OPEN.201800292 CR - Karkar, B., Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219–241. https://doi.org/ 10.1007/s00217-021-03875-y CR - Kaur, C., Kapoor, H.C. (2001). Antioxidants in fruits and vegetables – the millennium’s health. International Journal of Food Science & Technology, 36(7), 703–725. https://doi.org/10.1111/J.1365-2621.2001.00513.X CR - Kaur, P., Dhull, S.B., Sandhu, K.S., Salar, R.K., Purewal, S.S. (2018). Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. Journal of Food Measurement and Characterization, 12(3), 1530–1538. https://doi.org/10.1007/s11694-018-9768-6 CR - Kaur, P., Purewal, S.S., Sandhu, K.S., Kaur, M. (2019). DNA damage protection: an excellent application of bioactive compounds. Bioresources and Bioprocessing, 6, 1–11. https://doi.org/ 10.1186/s40643-019-0237-9 CR - Mohamed, H.M.A. (2011). Antioxidant synergy effect of rosemary aqueous extract and green tea flavanol-rich concentrate for superior protection of buffalo meatloaves. Seria Zootehnie, 56, 242–52. CR - Munteanu, I.G., Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ IJMS22073380 CR - Nile, S.H., Park, S.W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134–144. https://doi.org/10.1016/j.nut.2013.04.007 CR - Şahin, S., Karkar, B. (2019). The antioxidant properties of the chestnut bee pollen extract and its preventive action against oxidatively induced damage in DNA bases. Journal of Food Biochemistry, 43(7), e12888. https://doi.org/10.1111/ JFBC.12888 CR - Salar, R.K., Purewal, S.S. (2017). Phenolic content, antioxidant potential and DNA damage protection of pearl millet (Pennisetum glaucum) cultivars of North Indian region. Journal of Food Measurement and Characterization, 11(1), 126–133. https://doi.org/10.1007/s11694-016-9379-z CR - Saucier, C.T., Waterhouse, A.L. (1999). Synergetic activity of catechin and other antioxidants. Journal of Agricultural and Food Chemistry, 47(11), 4491–4494. https://doi.org/10.1021/jf990352t CR - Seal, T., Chaudhuri, K., Pillai, B., Chakrabarti, S., Mondal, T., Auddy, B. (2020). Evaluation of antioxidant activities, toxicity studies and the DNA damage protective effect of various solvent extracts of Litsea cubeba fruits. Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03637 CR - Skroza, D., Šimat, V., Vrdoljak, L., Jolić, N., Skelin, A., Čagalj, M., Frleta, R., Generalić Mekinić, I. (2022). Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants, 11(9), 1784. https://doi.org/10.3390/antiox11091784 CR - Srinivas, U.S., Tan, B.W.Q., Vellayappan, B.A., Jeyasekharan, A.D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. https://doi.org/10.1016/ j.redox.2018.101084 CR - Sudha, M.L., Dharmesh, S.M., Pynam, H., Bhimangouder, S.V., Eipson, S.W., Somasundaram, R., Nanjarajurs, S.M. (2016). Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. Journal of Food Science and Technology, 53(4), 1909–1918. https://doi.org/10.1007/s13197-015-2151-2 CR - Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231–1246. https://doi.org/10.3390/nu2121231 CR - Tsao, R. (2015). Synergistic interactions between antioxidants used in food preservation. In Handbook of Antioxidants for Food Preservation (pp.335–347). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-089-7.00013-0 CR - Wang, S., Meckling, K.A., Marcone, M.F., Kakuda, Y., Tsao, R. (2011). Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agricultural and Food Chemistry, 59(3), 960–968. https://doi.org/ 10.1021/jf1040977 CR - Ye, M., Dewi, L., Liao, Y.C., Nicholls, A., Huang, C.Y., Kuo, C.H. (2023). DNA oxidation after exercise: a systematic review and meta-analysis. Frontiers in Physiology, 14, 1275867. https://doi.org/10.3389/FPHYS.2023.1275867/BIBTEX CR - Zhang, Y., Wu, S., Qin, Y., Liu, J., Liu, J., Wang, Q., Ren, F., Zhang, H. (2018). Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chemistry, 240, 1072–1080. https://doi.org/ 10.1016/j.foodchem.2017.07.100 UR - https://doi.org/10.15237/gida.GD24012 L1 - https://dergipark.org.tr/en/download/article-file/3649094 ER -