TY - JOUR T1 - Air Atmosphere Sintering and Characterization of Dense Si3N4 Ceramics TT - Yoğun Si3N4 Seramiklerinin Hava Atmosferinde Sinterlenmesi ve Karakterizasyonu AU - Topateş, Gülsüm PY - 2024 DA - August Y2 - 2024 DO - 10.35414/akufemubid.1425085 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe University WT - DergiPark SN - 2149-3367 SP - 940 EP - 946 VL - 24 IS - 4 LA - en AB - Air atmosphere sintering successfully applied for Si3N4 ceramics at 1550oC by using double crucible set up. Low weight loss values showed that this set up eliminated oxidation risk. Both sintering time and type of starting Si3N4 powder affected final properties of samples. Sintered densities reached to 3.04 and 2.86 g/cm3 at 3 h for Ube and SicoNide sources, respectively. Around 10 wt. % of beta-Si3N4 is existing in SicoNide powder according to XRD analysis. FTIR study also proved the presence of this phase. This directly retards densification owing to lower reactivity of beta-phase compare to alpha. The major phase formed was beta-Si3N4 with minor amount of alpha-Si3N4 and Si2N2O. Large beta grains were also observed by SEM images from both samples sintered at 3 h. Besides density, dielectric constant, hardness and fracture toughness values quite encouraging for possible applications as substrate in circuits and biomedical materials of air sintered Si3N4 ceramics. KW - Si3N4 KW - air sintering KW - starting powder KW - sintering time KW - densification N2 - Hava atmosferinde sinterleme, Si3N4 seramikleri için çift pota düzeneği kullanılarak 1550oC’de başarılı bir şekilde uygulanmıştır. Düşük ağırlık kayıpları düzeneğin, oksidasyon riskini ortadan kaldırdığını göstermiştir. Sinterleme süresinin ve Si3N4 başlangıç toz türünün numunelerin nihai özelliklerini doğrudan etkilemiştir. Ube ve SicoNide tozu için sinterlenmiş yoğunluklar 3 saat sonunda sırasıyla 3.04 ve 2.86 g/cm3 olarak elde edilmiştir. XRD analizi SicoNide tozunun ağırlıkça % 10 civarında beta-Si3N4 içerdiğini göstermiştir. FTIR çalışması da bu fazın varlığını desteklemektedir. Beta fazının alfa’ya kıyasla daha düşük reaktiviteye sahip olması nedeniyle yoğunlaşma gecikmiştir. Ana faz beta-Si3N4, alfa-Si3N4 ve Si2N2O ikincil fazlar olarak oluşmuştur. Büyük alfa taneleri yapılan SEM analizi ile 3 saat sinterlenen her iki numune gözlemlenmiştir. Yoğunluk haricinde dielektrik sabit, sertlik ve kırılma tokluğu değerleri havada sinterlenen Si3N4 seramiklerinin devre altılığı ve biyomedikal malzeme uygulamaları için umut vericidir. CR - Barta, J., Manela, M. and Fischer, R., 1985. Si3N4 and Si2N2O for high performance radomes. Materials Science and Engineering, 71, 265-272. https://doi.org/10.1016/0025-5416(85)90236-8 CR - Björklund, H., Falk, L. K. L., Rundgren, K., and Wasén, J. 1997. β-Si3N4 grain growth, part I: Effect of metal oxide sintering additives. Journal of the European Ceramic Society, 17(11), 1285-1299. https://doi.org/10.1016/S0955-2219(96)00237-3 CR - Dai, Q., He, D., Meng, F., Liu, P. and Liu, X., 2021. Dielectric constant, dielectric loss and thermal conductivity of Si3N4 ceramics by hot pressing with CeO2–MgO as sintering aid. Materials science in semiconductor processing, 121, 105409. https://doi.org/10.1016/j.mssp.2020.105409 CR - Du, S., Li, F., Zhang, J., Chen, Z., Zhang, S., Zhao, S., Zhao D., Fan, B., Chen, K. and Liu, G. 2024. Effects of sintering additives and sintering methods on the mechanical, antimicrobial and optical properties of Si3N4 bioceramics. Journal of the Mechanical Behavior of Biomedical Materials, 154, 106529. https://doi.org/10.1016/j.jmbbm.2024.106529 CR - Elsen, S. R., and Ramesh, T., 2016. Analysis and optimization of dry sliding wear characteristics of zirconia reinforced alumina composites formed by conventional sintering using response surface method. International Journal of Refractory Metals and Hard Materials, 58, 92-103. https://doi.org/10.1016/j.ijrmhm.2016.04.007 CR - Kim, K. A., Lysenkov, A. S., Fedorov, S. V., Petrakova, N. V., Frolova, M. G., Perevislov, S. N. and Kargin, Y. F., 2022. Effect of CaO–Al2O3 (48: 52 wt%) Sintering Aids on the Phase Composition and Properties of Si3N4-Based Ceramics. Inorganic Materials, 58 (8), 877-885. https://doi.org/10.1134/S0020168522080040 CR - Lee, S. J. and Baek, S., 2016. Effect of SiO2 content on the microstructure, mechanical and dielectric properties of Si3N4 ceramics. Ceramics International, 42 (8), 9921-9925. https://doi.org/10.1016/j.ceramint.2016.03.092 CR - Long, M., Li, Y., Qin, H., Xue, W., Jiang, P., Sun, J. and Kumar, R. V., 2017. Mechanism of active and passive oxidation of reaction-bonded Si3N4-SiC refractories. Ceramics International, 43 (14), 10720-10725. https://doi.org/10.1016/j.ceramint.2017.05.044 CR - Luo, C., Zhang, Y.,and Deng, T., 2021. Pressureless sintering of high performance silicon nitride ceramics at 1620 oC. Ceramics International, 47 (20), 29371-29378. https://doi.org/10.1016/j.ceramint.2021.07.104 CR - Matovic, B., 2003. Low Temperature Sintering Additives for Silicon Nitride. Ph.D. Dissertation, Stuttgart University, Institute of Non-metallic Anorganic Materials, Stuttgart, 34. CR - Mazdiyasni, K. S. and Cooke, C. M., 1973. Synthesis, characterization, and consolidation of Si3N4 obtained from ammonolysis of SiCl4. Journal of the American Ceramic Society, 56 (12), 628-633 https://doi.org/10.1111/j.1151-2916.1973.tb12440.x CR - Ohashi, M., Kanzaki, S., and Tabata, H. 1991. Effect of additives on some properties of silicon oxynitride ceramics. Journal of materials science, 26, 2608-2614. https://doi.org/10.1007/BF00545544 CR - Peng, H. 2004. Spark Plasma Sintering of Si3N4-Based Ceramics: Sintering mechanism-Tailoring microstructure-Evaluating properties, Ph.D. Dissertation, Stockholm University, Department of Inorganic Chemistry, 8-17. CR - Pigeon, R. G., and Varma, A. 1992. Quantitative phase Analysis of Si3N4 by X-ray diffraction. Journal of materials science letters, 11, 1370-1372. https://doi.org/10.1007/BF00729365 CR - Plucknett, K., 2009. Sintering Behavior and Microstructure Development of Porous Silicon Nitride Ceramics Prepared in an Air Atmosphere Furnace. International Journal of Applied Ceramic Technology, 6 (6), 702-716. https://doi.org/10.1111/j.1744-7402.2008.02309.x CR - Plucknett, K. P. and Lin, H. T., 2005. Sintering silicon nitride ceramics in air. Journal of the American Ceramic Society, 88 (12), 3538-3541. https://doi.org/10.1111/j.1551-2916.2005.00631.x CR - Sekercioglu, I. and Wills, R. R., 1979. Effect of Si3N4 Powder Reactivity on the Preparation of the Si2N2O‐Al2O3 Silicon Aluminum Oxynitride Solid Solution. Journal of the American Ceramic Society, 62 (11‐12), 590-593. https://doi.org/10.1111/j.1151-2916.1979.tb12738.x CR - Trout, T. K., Bellama, J. M., Brinckman, F. E. and Faltynek, R. A., 1989. Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta, and amorphous phases of silicon nitride. Journal of Materials Research, 4 (2), 399-403. https://doi.org/10.1557/JMR.1989.0399 CR - Wada, S. (2001). Control of instability of Si3N4 during pressureless sintering. Journal of the Ceramic Society of Japan, 109 (1274), 803-808. https://doi.org/10.2109/jcersj.109.1274_803 CR - Wada S., Chaiyapak, P., Jinawath, S. and Wasanapiarnpong, T., 2004. Sintering of Si3N4 ceramics in air atmosphere furnace (Part 2)-Agglomeration of packing powder and deterioration of Al2O3 crucible. Journal of the Ceramic Society of Japan, 112 (1304), 234-237. https://doi.org/10.2109/jcersj.112.234 CR - Wada S. Hattori T. and Yokoyama K., 2001. Sintering of Si3N4 ceramics in air atmosphere furnace, Journal of the Ceramic Society of Japan, 100 (3) 281-283. https://doi.org/10.2109/jcersj.109.1267_281 CR - Wangmooklang, N., Sujirote, K., Jinawath, S. and Wada, S. 2007. Gas/solid reaction during sintering of Si3N4 ceramics in an air furnace. Journal of the European Ceramic Society, 27 (4), 2111-2117. https://doi.org/10.1016/j.jeurceramsoc.2006.06.004 CR - Xie, L., Yao, D., Xia, Y., Yin, J., Liang, H., Zuo, K., and Zeng, Y. 2019. High porosity Ca-α-SiAlON ceramics with rod-like grains fabricated by freeze casting and pressureless sintering. Journal of the European Ceramic Society, 39(6),2036-2041. https://doi.org/10.1016/j.jeurceramsoc.2019.01.027 CR - Yang, L., Ditta, A., Feng, B., Zhang, Y., and Xie, Z. 2019. Study of the comparative effect of sintering methods and ,sintering additives on the microstructure and performance of Si3N4 ceramic. Materials, 12(13), 2142. https://doi.org/10.3390/ma12132142 CR - Zhao, S., Wang, Z., Li, L., Guo, A., Wang, G. and Li, H., 2019. Sintering Behavior of Si3N4 Ceramics at Low Temperature in Air Atmosphere Furnace. IOP Conference Series, Materials Science and Engineering, Kunming, China, 012045. UR - https://doi.org/10.35414/akufemubid.1425085 L1 - https://dergipark.org.tr/en/download/article-file/3681699 ER -