TY - JOUR T1 - Constructing Uninorms Based on Closure and Interior Operators in Bounded Lattices TT - Sınırlı Kafesler Üzerinde Kapanış ve İç Operatörlere Dayanan Uninormların İnşaası AU - Çaylı, Gül Deniz PY - 2024 DA - December Y2 - 2024 DO - 10.35414/akufemubid.1439061 JF - Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi PB - Afyon Kocatepe University WT - DergiPark SN - 2149-3367 SP - 1323 EP - 1332 VL - 24 IS - 6 LA - en AB - Uninorms generalizing triangular norms and triangular conorms on bounded lattices have attracted considerable attention recently. In this article, two new approaches are suggested to generate uninorms with an identity element on a bounded lattice. These approaches exploit the existences of a triangular norm (triangular conorm) and a closure operator (interior operator) on a bounded lattice. Meanwhile, two structures of idempotent uninorms on bounded lattices are obtained. In addition, the relationship between the proposed approaches and the existing constructions is investigated. KW - Bounded lattice KW - Uninorm KW - Closure operator KW - Interior operator N2 - Sınırlı kafesler üzerinde üçgensel normları ve üçgensel konormları genelleştiren uninormlar son zamanlarda oldukça ilgi çekmiştir. Bu makalede bir sınırlı kafes üzerinde bir birim elemanlı uninormları üreten iki yeni yaklaşım önerilmektedir. Bu yaklaşımlar, bir sınırlı kafes üzerinde bir üçgensel normun (üçgensel konormun) ve bir kapanış operatörün (iç operatörün) varlıklarından yararlanmaktadır. Bu esnada, sınırlı kafesler üzerinde idempotent uninormların iki yapısı elde edilmektedir. Ayrıca, önerilen yaklaşımlar ve mevcut inşaalar arasındaki ilişki araştırılmaktadır. CR - Beliakov, G., Pradera, A. and Calvo, T., 2007. Aggregation Functions: A guide for Practitioners, Springer, Berlin. Benítez, J.M., Castro, J.L. and Requena, I., 1997. Are artificial neural networks black boxes? IEEE Transactions on Neural Networks and Learning Systems, 8, 1156–1163. https://doi.org/10.1109/72.623216 CR - Birkhoff, G., 1967. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI. Bodjanova, S. and Kalina, M., 2018. Uninorms on bounded lattices-recent development. In: Kacprzyk, J., et al. (Eds.) EUSFLAT 2017, AISC, vol 641, Springer, Cham, 224–234. CR - Bodjanova, S. and Kalina, M., 2019. Uninorms on bounded lattices with given underlying operations. In: Halaś, R., et al. (Eds.), AGOP 2019, AISC, vol. 981, Springer, Cham, 183-194. CR - Çaylı, G.D., Karaçal, F. and Mesiar, R., 2019. On internal and locally internal uninorms on bounded lattices. International Journal of General Systems, 48, 235-259. https://doi.org/10.1080/03081079.2018.1559162 CR - Çaylı, G.D., 2019. Alternative approaches for generating uninorms on bounded lattices. Information Sciences, 488, 111-139. https://doi.org/10.1016/j.ins.2019.03.007 CR - Çaylı, G.D., 2020. Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets and Systems, 395, 107-129. https://doi.org/10.1016/j.fss.2019.06.005 CR - Çaylı, G.D., 2021. New construction approaches of uninorms on bounded lattices, International Journal of General Systems, 50, 139-158. https://doi.org/10.1080/03081079.2020.1863397 CR - Dan, Y. and Hu, B.Q., 2020. A new structure for uninorms on bounded lattices. Fuzzy Sets and Systems, 386, 77-94. https://doi.org/10.1016/j.fss.2019.02.001 CR - Dan, Y., Hu, B.Q. and Qiao, J., 2019. New constructions of uninorms on bounded lattices. International Journal of Approximate Reasoning, 110, 185-209. https://doi.org/10.1016/j.ijar.2019.04.009 CR - De Baets, B., 1999. Idempotent uninorms. European Journal of Operational Research, 118, 631-642. https://doi.org/10.1016/S0377-2217(98)00325-7 CR - De Baets, B., Fodor, J., Ruiz-Aguilera, D. and Torrens, J., 2009. Idempotent uninorms on finite ordinal scales. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systsems, 17, 1-14. https://doi.org/10.1142/S021848850900570X CR - Drewniak, J. and Drygaś, P., 2002. On a class of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systsems, 10, 5-10. https://doi.org/10.1142/S021848850200179X CR - Drossos, C. A., 1999. Generalized t-norm structures. Fuzzy Sets and Systems, 104, 53–59. https://doi.org/10.1016/S0165-0114(98)00258-9 CR - Drossos, C. A. and Navara, M. 1996. Generalized t-conorms and closure operators. Proceedings of EUFIT’96, Aachen, Germany, 22–26. CR - Dubios, D. and Prade, H., 1995. A review of fuzzy set aggregation connectives. Information Sciences, 3, 85–121. https://doi.org/10.1016/0020-0255(85)90027-1 CR - Dubios, D. and Prade, H., 2000. Fundamentals of Fuzzy Sets Kluwer Academic Publisher, Boston. Everett, C.J., 1944. Closure operators and Galois theory in lattices. Transactions of the American Mathematical Society, 55, 514–525. https://doi.org/10.1090/S0002-9947-1944-0010556-9 CR - Fodor, J., Yager, R.R. and Rybalov, A., 1997. Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systsems, 5, 411-427. https://doi.org/10.1142/S0218488597000312 CR - González-Hidalgo, M., Massanet, S., Mir, A. and Ruiz-Aguilera, D., 2015. On the choice of the pair conjunction–implication into the fuzzy morphological edge detector. IEEE Transactions on Fuzzy Systems, 23, 872–884. https://doi.org/10.1109/TFUZZ.2014.2333060 CR - He, P. and Wang, X.P., 2021. Constructing uninorms on bounded lattices by using additive generators. International Journal of Approximate Reasoning, 136, 1-13. https://doi.org/10.1016/j.ijar.2021.05.006 CR - Hua, X.J. and Ji, W., 2022. Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets and Systems, 427, 109-131. https://doi.org/10.1016/j.fss.2020.11.005 CR - Karaçal, F. and Mesiar, R., 2015. Uninorms on bounded lattices. Fuzzy Sets and Systems, 261, 33–43. https://doi.org/10.1016/j.fss.2014.05.001 CR - Klement, E.P., Mesiar, R. and Pap, E., 2000. Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000. Klement, E.P., Mesiar, R. and Pap, E., 2004a. Triangular norms. Position article I: basic analytical and algebraic properties. Fuzzy Sets and Systems, 143, 5–26. https://doi.org/10.1016/j.fss.2003.06.007 CR - Klement, E.P., Mesiar, R. and Pap, E., 2004b. Triangular norms. Position article II: general construc- tions and parametrized families. Fuzzy Sets and Systems, 145, 411–438. https://doi.org/10.1016/S0165-0114(03)00327-0 CR - Menger, K., 1942. Statistical metrics. Proceedings of the National Academy of Sciences, 8, 535–537. https://doi.org/10.1073/pnas.28.12.535 CR - Ouyang, Y. and Zhang, H.P., 2020. Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets and Systems, 395, 93–106. https://doi.org/10.1016/j.fss.2019.05.006 CR - Schweizer, B. and Sklar, A., 1963. Associative functions and abstract semigroups. Publicationes Mathematicae Debrecen, 10, 69–81. https://doi.org/10.5486/PMD.1963.10.1-4.09 CR - Schweizer, B. and Sklar, A., 1983. Probabilistic Metric Spaces. Elsevier North-Holland, New York. Sun, X.R. and Liu, H.W., 2022. Further characterization of uninorms on bounded lattices. Fuzzy Sets and Systems, 427, 96-108. https://doi.org/10.1016/j.fss.2021.01.006 CR - Takács, M., 2008. Uninorm-based models for FLC systems. Journal of Intelligent & Fuzzy Systems, 19, 65-73. Yager, R.R., 1994. Aggregation operators and fuzzy systems modelling. Fuzzy Sets and Systems, 67, 129–145. https://doi.org/10.1016/0165-0114(94)90082-5 CR - Yager, R.R. and Rybalov, A., 1996. Uninorm aggregation operators. Fuzzy Sets and Systems, 80, 111-120. https://doi.org/10.1016/0165-0114(95)00133-6 CR - Yager, R.R., 2001. Uninorms in fuzzy systems modelling. Fuzzy Sets and Systems, 122, 167–175. https://doi.org/10.1016/S0165-0114(00)00027-0 CR - Yager, R.R., 2003. Defending against strategic manipulation in uninorm-based multi-agent decision making. Fuzzy Sets and Systems, 140, 331-339. https://doi.org/10.1016/S0377-2217(01)00267-3 CR - Zhao, B. and Wu, T., 2021. Some further results about uninorms on bounded lattices. International Journal of Approximate Reasoning, 130, 22-49. https://doi.org/10.1016/j.ijar.2020.12.008 UR - https://doi.org/10.35414/akufemubid.1439061 L1 - https://dergipark.org.tr/en/download/article-file/3737343 ER -