TY - JOUR T1 - A new capacitive inductive system design for LASER-induced kilotesla magnetic field generation AU - Akay, Ahmet Nuri AU - Varol, Melda AU - Kurt, Erol PY - 2024 DA - March Y2 - 2024 DO - 10.30521/jes.1439709 JF - Journal of Energy Systems JO - Journal of Energy Systems PB - Erol KURT WT - DergiPark SN - 2602-2052 SP - 75 EP - 88 VL - 8 IS - 1 LA - en AB - This research focuses on exploring the nanosecond laser-driven coil systems capable of generating kT magnetic fields and the diverse applications of this system. Through investigating the effects of laser parameters and coil structures, the aim of this study is to unveil the physics of these generated intense magnetic fields. The outcomes gained from this research give an important and fundamental understanding on high magnetic field production, informing the development in laser-driven systems. The implications of this study extend to plasma physics, astrophysics simulations and fusion research. Furthermore, the study explains the advantages and applications of these intense magnetic fields and includes measurements of laser pulse powers according to coil materials. KW - Capacitor-coil target KW - Kilotesla magnetic field KW - Laser-driven KW - Magnetic field generation KW - Plasma formation CR - [1] Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T., Shiraga, H., Nishimura, H., & Azechi, H., Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Scientific Reports, 3(1) (2013), 01170;1-7, DOI: 10.1038/srep01170 CR - [2] Murdin, B., Li, J., Pang, M., Bowyer, E., Litvinenko, K., Clowes, S., et al., Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars, Nature Communications, 4(1) (2013), 1469;1-7, DOI: 10.1038/ncomms2466 CR - [3] Gilch, P., Pollinger-Dammer, F., Musewald, C., Michel-Beyerle, M., Steiner, U., Magnetic Field Effect on Picosecond Electron Transfer, Science (New York, N.Y.), 281(5379) (1998), 982-984, DOI: 10.1126/science.281.5379.982 CR - [4] Lai, D., Matter in Strong Magnetic Fields. Reviews of Modern Physics, 73 (2001), 629-661, DOI: 10.1103/RevModPhys.73.629 CR - [5] Zhang, Z., Zhu, B., Li, Y., Jiang, W., Yuan, D., Wei, H., et al., Generation of strong magnetic fields with a laser-driven coil, High Power Laser Science and Engineering, 6 (2018), e38;1-8, DOI: 10.1017/hpl.2018.33 CR - [6] Sano, T., Inoue, T., Nishihara, K., Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas, Physical Review Letters, 111(20) (2013), 205001;1-5, DOI: 10.1103/PhysRevLett.111.205001 CR - [7] Matsuo, K., Nagatomo, H., Zhang, Z., Nicolaï, P., Sano, T., Sakata, S., et al., Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field, Physical Review E, 95(5-1) (2017), 053204, DOI: 10.1103/PhysRevE.95.053204 CR - [8] Plechaty, C., Presura,. R, Stein, S., Martinez, D., Neff, S., Ivanov, V., et al., Penetration of a laser-produced plasma across an applied magnetic field, High Energy Density Physics, 6(2) (2013), 258-261, DOI: 10.1016/j.hedp.2009.12.006 CR - [9] Albertazzi, B., Ciardi, A., Nakatsutsumi, M., Vinci, T., Béard, J., Bonito, R., et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science (New York, N.Y.), 346(6207) (2014), 325-328, DOI: 10.1126/science.1259694 CR - [10] Schaeffer, D., Fox, W., Haberberger, D., Fiksel, G., Bhattacharjee, A., Barnak, D., et al., High-Mach number, laser-driven magnetized collisionless shocks, Physics of Plasmas, 24(12) (2017), 122702;1-11, DOI: 10.1063/1.4989562 CR - [11] Byvank, T., Banasek, J., Potter, W., Greenly, J., Seyler, C., Kusse, B.. Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation, Phys Plasmas, 24(12) (2017), 122701;1-11, DOI: 10.1063/1.5003777 CR - [12] Matsuo, K., Higashi, N., Iwata, N., Sakata, S., Lee, S., Johzaki, T., et al., Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse, Phys Rev Lett, 124(3) (2020), 035001;1-8 DOI: 10.1103/PhysRevLett.124.035001 CR - [13] Tatarakis, M., Watts, I., Beg, F., et al., Measuring huge magnetic fields, Nature, 415(6869), p. 280 (2003). DOI: 10.1038/415280 CR - [14] Wagner, U., Tatarakis, M., Gopal, A., Beg, F., Clark, E., Dangor, A.E., et al., Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas, Physical Review E, 70(2) (2004), 026401;1-5, DOI: 10.1103/PhysRevE.70.026401 CR - [15] Santos, J., Bailly-Grandvaux, M., Giuffrida, L., Forestier-Colleoni, P., Fujioka, S., Zhang, Z., et al., Laser-driven platform for generation and characterization of strong quasi-static magnetic fields, New Journal of Physics, 17 (2015), 083051;1-10 DOI: 10.1088/1367-2630/17/8/08305 CR - [16] Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., et al., Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser, Scientific Reports, 3 (2013), 1170;1-7, DOI: 10.1038/srep01170 CR - [17] Zhu, B., Li, Y., Yuan, D., Li, Y., Li, F., Liao, G., et al., Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Applied Physics Letters, 107(26) (2015), 261903;1-5 DOI: 10.1063/1.4939119 CR - [18] Chang, P.Y., Fiksel, G., Hohenberger, M., Knauer, J.P., Betti, R., Marshall, F.J., et al., Fusion yield enhancement in magnetized laser-driven implosions, Phys Rev Lett, 107(3) (2011), 035006;1-4, DOI 10.1103/PhysRevLett.107.035006 CR - [19] Pollock, B., Froula, D., Davis, P., Ross, J., Fulkerson, S., Bower, J., et al., High magnetic field generation for laser-plasma experiments, Review of Scientific Instruments, 77(11) (2016), 114703;1-6, DOI: 10.1063/1.2356854 CR - [20] Froula, D., Ross, J., Pollock, B., Davis, P., James, A., Divol, L., et al., Quenching of the Nonlocal Electron Heat Transport by Large External Magnetic Fields in a Laser-Produced Plasma Measured with Imaging Thomson Scattering, Physical Review Letters, 98(13) (2007), 135001;1-4, DOI: 10.1103/PhysRevLett.98.135001 CR - [21] Higginson, D.P., Revet, G., Khiar, B., Béard, J., Blecher, M., Borghesi, M., et al., Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle, High Energy Density Physics, 23 (2017), 48-59, DOI: 10.1016/j.hedp.2017.02.003 CR - [22] Albertazzi, B., Béard, J., Ciardi, A., Vinci, T., Albrecht, J., Billette, J., et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Review of Scientific Instruments, 84(4) (2013), 043505;1-7, DOI: https://doi.org/10.1063/1.4795551 CR - [23] Daido, H., Miki, F., Mima, K., Fujita, M., Sawai, K., Fujita, H., et al., Generation of a strong magnetic field by an intense CO2 laser pulse, Phys Rev Lett, 56(8) (1986), 846-849, DOI: 10.1103/PhysRevLett.56.846 CR - [24] Williams, G., Patankar, S., Mariscal, D., Bude, J., Carr, C., Goyon, C., et al., Laser intensity scaling of the magnetic field from a laser-driven coil target, Journal of Applied Physics,.127(8) (2020), 083302;1-18, DOI: 10.1063/1.511716 CR - [25] Goyon, C., Pollock, B.B., Turnbull, D.P., Hazi, A., Divol, L., Farmer, W.A., et al., Ultrafast probing of magnetic field growth inside a laser-driven solenoid, Phys Rev E, 95(3) (2017), 033208;1-12, DOI: 10.1103/PhysRevE.95.033208 CR - [26] Chien. A., Gao, L., Zhang, S., Ji, H., Blackman, E., Chen, H., et al., Pulse width dependence of magnetic field generation using laser-powered capacitor coils, Physics of Plasmas, 28 (2021), 052105;1-10, DOI: 10.1063/5.0044048 CR - [27] Morita, H., Pollock, B.B., Goyon, C.S., Williams, G.J., Law, K.F.F., Fujioka, S., et al., Dynamics of laser-generated magnetic fields using long laser pulses, Phys Rev E, 103(3-1) (2021), 033201, DOI: 10.1103/PhysRevE.103.033201 CR - [28] Zhu, B., Li, Y., Yuan, D., Li, Y., Li, F., Liao, G., et al., Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses, Applied Physics Letters, 107(26) (2015), 261903;1-5 DOI: 10.1063/1.4939119 CR - [29] Zhu, B., Zhang, Z., Jiang, W., Wang, J., Zhu, C., Tan, J., et al., Ultrafast pulsed magnetic fields generated by a femtosecond laser, Applied Physics Letters, 113(7) (2018), 072405;1-4, DOI: 10.1063/1.5038047 CR - [30] Gao, L., Ji, H., Fiksel, G., Fox, W., Evans, M., Alfonso, N., Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current, Physics of Plasmas, 23(4) (2016), 043106;1-7. DOI: 10.1063/1.4945643 CR - [31] Bailly-Grandvaux, M., Santos, J., Poye, A., Quasi-stationary magnetic fields generation with a laser-driven capacitor-coil assembly, Physical Review E, 96 (2017), 023202;1-10, DOI: 10.1103/PhysRevE.96.023202 CR - [32] Chubar, O., Elleaume, P., Chavanne, J., A three-dimensional magnetostatics computer code for insertion devices, J. Synchrotron Radiation, 5 (1998), 481-484, DOI: 10.1107/S0909049597013502 CR - [33] Morita, H., Fujioka, S., Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils., Reviews of Modern Plasma Physics, 7:13;1-45 (2023), DOI: 10.1007/s41614-023-00115-6 CR - [34] Liao, G.-Q., Li, Y., Zhu, B.-J., Li, Y., Li, F., Mengchao, Li., et al., Proton radiography of magnetic fields generated with an open-ended coil driven by high power laser pulses, Matter and Radiation at Extremes, 1(2016), 187-191, DOI: 10.1016/j.mre.2016.06.003 CR - [35] Strickland, D., Mourou, G., Compression of amplified chirped optical pulse, Optics Communications, 56(3) (1985), 219-221, DOI: 10.1016/0030-4018(85)90120-8 CR - [36] Li, X.X., Cheng, R.J., Wang, Q., Liu, D.J., Lv, S.Y., Huang, Z.M., et al, Anomalous staged hot-electron acceleration by two-plasmon decay instability in magnetized plasmas, Phys Rev E.,108(5) (2023), L053201;1-6. DOI: 10.1103/PhysRevE.108.L053201 CR - [37] Peebles, J.L., Davies, J.R., Barnak, D.H., Garcia-Rubio, F., Heuer, P.V., Brent, G., et al., An assessment of generating quasi-static magnetic fields using laser-driven “capacitor” coils, Phys Plasmas, 29(8) (2022), 080501;1-28, DOI: 10.1063/5.0096784 CR - [38] Dursun, B., Kurt, E., Tekerek, M., A power circuit design for the poloidal field coils in a torus-shaped plasma system, Jornal of Energy Systems, 2019;3(3):123-128. DOI: 10.30521/jes.609667 CR - [39] Kurt, E., Dursun, B. Particle Trajectories and Energy Distribution from a New IEC Fusion Device: A Many-Body Approach., J. Fusion Energy 35, 483–492 (2016). DOI: 10.1007/s10894-015-0033-2 CR - [40] Dursun, B., Kurt, E., Kurt, H., Energy distributions and radiation emissions in an inertial electrostatic confinement (IEC) device under low and moderate magnetic fields, Int. J. Hydrogen Energy, 42 (2017), 17874-17885, DOI: 10.1016/j.ijhydene.2017.02.015 UR - https://doi.org/10.30521/jes.1439709 L1 - https://dergipark.org.tr/en/download/article-file/3739985 ER -