TY - JOUR T1 - Relationships between anthocyanin content and some pomological and colour characteristics of black mulberry (Morus nigra) fruit AU - Öcalan, Osman Nuri AU - Saraçoğlu, Onur PY - 2024 DA - June Y2 - 2024 DO - 10.53663/turjfas.1440608 JF - Turkish Journal of Food and Agriculture Sciences JO - Turk J Food Agric Sci PB - Burhan ÖZTÜRK WT - DergiPark SN - 2687-3818 SP - 55 EP - 62 VL - 6 IS - 1 LA - en AB - The analytical method used to determine the total monomeric anthocyanin content of fruits is costly and labour intensive. Researchers are endeavouring to develop prediction models to determine anthocyanin content in a simpler and more accurate way. The aim of this study was to investigate whether there is a relationship between anthocyanin and some fruit characteristics (width, length, weight, L*, a*, b*, chroma, hue) in black mulberry (Morus nigra) fruit. With the outputs of the study, it is aimed to provide preliminary information for the models to be developed for anthocyanin estimation in future studies. The study material, black mulberry fruits, was collected from a single black mulberry tree in Kemalpaşa village of Tokat province in July 2022. Harvesting of the fruits continued for two weeks as raw, semi-ripe and ripe. A total of 586 fruits were individually evaluated and the weight, width, length, colour parameters (L*, a*, b*, chroma, and hue) and total monomeric anthocyanin contents of each fruit were determined. Then, Pearson correlation coefficients between the variables were determined. Stepwise regression analysis was used to find the appropriate model to explain the change in the dependent variable anthocyanin with independent variables (length, width, weight, L*, a*, b*, chroma, hue). After the multiple regression model was established, residual analysis was performed to see the outliers in the full model and to check the accuracy of the model. As a result of the study, it was observed that anthocyanin content could be predicted by colour parameters up to a certain maturity stage. This relationship was found to weaken at the ripeness stage when the fruit colour turns black. KW - Chroma KW - Hue KW - Pearson correlation analysis KW - Stepwise regression analysis CR - Aman, F., & Masood, S. (2020). How nutrition can help to fight against COVID-19 Pandemic. Pakistan Journal of Medical Sciences, 36 (COVID19-S4), S121. https://doi.org/10.12669/pjms.36.COVID19-S4.2776 CR - Arozarena, I., Ortiz, J., Hermosín-Gutiérrez, I., Urretavizcaya, I., Salvatierra, S., Córdova, I., Marín-Arroyo M. R., Noriega M. J., & Navarro, M. (2012). Color, ellagitannins, anthocyanins, and antioxidant activity of Andean blackberry (Rubus glaucus Benth.) wines. Journal of Agricultural and Food Cemistry, 60(30), 7463-7473. https://doi.org/10.1021/jf300924z CR - Castaneda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001 CR - Castro-Acosta, M. L., Lenihan-Geels, G. N., Corpe, C. P., & Hall, W. L. (2016). Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proceedings of the Nutrition Society, 75(3), 342-355. https://doi.org/10.1017/S0029665116000240 CR - Chu, L., Du, Q., Li, A., Liu, G., Wang, H., Cui, Q., Liu, Z., Liu, H., Lu Y., Deng Y., & Xu, G. (2024). Integrative transcriptomic and metabolomic analyses of the mechanism of anthocyanin accumulation and fruit coloring in three blueberry varieties of different colors. Horticulturae, 10(1), 105. https://doi.org/10.3390/horticulturae10010105 CR - de Faria Coelho-Ravagnani, C., Corgosinho, F. C., Sanches, F. L. F. Z., Prado, C. M. M., Laviano, A., & Mota, J. F. (2021). Dietary recommendations during the COVID-19 pandemic. Nutrition Reviews, 79(4), 382-393. https://doi.org/10.1093/nutrit/nuaa067 CR - Deroles, S. (2009). Anthocyanin biosynthesis in plant cell cultures: A potential source of natural colourants. Anthocyanins: biosynthesis, functions, and applications, 108-167. Springer Science & Business Media. (Eds.: Gould, K., Davies, K. M., & Winefield, C.). https://doi.org/10.1007/978-0-387-77335-3_5 CR - do Lago, R. C., Silva, J. S., Pinto, K. M., Rodrigues, L. F., & Boas, E. V. D. B. V. (2020). Effect of maturation stage on the physical, chemical and biochemical composition of black mulberry. Research, Society and Development, 9(4), e49942824-e49942824. https://doi.org/10.33448/rsd-v9i4.2824 CR - Ercisli, S., & Orhan, E. (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chemistry, 103(4), 1380-1384. https://doi.org/10.1016/j.foodchem.2006.10.054 CR - Feng, C., Su, S., Wang, L., Wu, J., Tang, Z., Xu, Y., Shu, Q., & Wang, L. (2016). Antioxidant capacities and anthocyanin characteristics of the black–red wild berries obtained in Northeast China. Food Chemistry, 204, 150-158. https://doi.org/10.1016/j.foodchem.2016.02.122 CR - Giusti M. M, & Wrolstad R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Unit F1.2, p. 19–31. In: Wrolstad, R.E. and S.J. Schwartz (eds.). Handbook of food analytical chemistry. Wiley, New York. https://doi.org/10.1002/0471142913.faf0102s00 CR - Guidi, L., Penella, P., & Landi, M. (2015). Anthocyanins in Mediterranean diet: common and innovative sources. In Handbook of Anthocyanins: Food Sources, Chemical Application and Health Benefit. (pp. 1-50). Nova Science Publishers, Inc. CR - Han, F. L., Zhang, W. N., Pan, Q. H., Zheng, C. R., Chen, H. Y., & Duan, C. Q. (2008). Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules, 13(11), 2859-2870. https://doi.org/10.3390/molecules13112859 CR - Heldt, H. W., & Piechulla, B. (2015). Plant biochemistry. Academic Press. Translation from the 4th Edition. Translation Editors: Prof. Dr. Faik Ahmet Ayaz & Prof. Dr. Atalay Sökmen). 608 p. CR - Hernanz, D., Recamales, Á. F., Meléndez-Martínez, A. J., González-Miret, M. L., & Heredia, F. J. (2008). Multivariate statistical analysis of the color− anthocyanin relationships in different soilless-grown strawberry genotypes. Journal of Agricultural and Food Chemistry, 56(8), 2735-2741. https://doi.org/10.1021/jf073389j CR - Hosmer, D. W. & Lemeshow, S. (1999). Applied Survival Analysis, New York: John Wiley & Sons, Inc. CR - Hou, D. X., Fujii, M., Terahara, N., & Yoshimoto, M. (2004). Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology, 2004(5), 321. https://doi.org/10.1155/S1110724304403040 CR - Itle, R. A., & Kabelka, E. A. (2009). Correlation between L* a* b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience, 44(3), 633-637. https://doi.org/10.21273/HORTSCI.44.3.633 CR - Karaat, F.E., Gündüz, K., Saraçoğlu, O., & Yıldırım, H. (2019). Pomological and phytochemical evaluation of different cherry species: mahaleb (Prunus mahaleb L.), wild sweet cherry (Prunus avium L.) and wild sour cherry (Prunus cerasus L.), sweet and sour cherry cultivars. Acta Scientiarum Polonorum Hortorum Cultus, 18(4), 181–191. https://doi.org/10.24326/asphc.2019.4.17 CR - Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779 CR - Koca, I., & Karadeniz, B. (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae, 121(4), 447-450. https://doi.org/10.1016/j.scienta.2009.03.015 CR - Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64(5), 923-933. https://doi.org/10.1016/S0031-9422(03)00438-2 CR - Li, S., Yang, Y., Yu, J., Zhou, H., Hou, Z., & Wang, X. (2024). Molecular and metabolic insights into purplish leaf coloration through the investigation of two mulberry (Morus alba) genotypes. BMC Plant Biology, 24(1), 1-17. https://doi.org/10.1186/s12870-024-04737-x CR - Lin, C. Y., & Lay, H. L. (2013). Characteristics of fruit growth, component analysis and antioxidant activity of mulberry (Morus spp.). Scientia Horticulturae, 162, 285-292. https://doi.org/10.1016/j.scienta.2013.08.009 CR - Manetas, Y. (2006). Why some leaves are anthocyanic and why most anthocyanic leaves are red?. Flora-Morphology, Distribution, Functional Ecology of Plants, 201(3), 163-177. https://doi.org/10.1016/j.flora.2005.06.010 CR - McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254 CR - Naja, F., & Hamadeh, R. (2020). Nutrition amid the COVID-19 pandemic: a multi-level framework for action. European Journal of Clinical Nutrition, 74(8), 1117-1121. https://doi.org/10.1038/s41430-020-0634-3 CR - Özgen, M., Serçe, S., & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Scientia Horticulturae, 119(3), 275-279. https://doi.org/10.1016/j.scienta.2008.08.007 CR - Shibghatallah, M. A. H., Khotimah, S. N., Suhandono, S., Viridi, S., & Kesuma, T. (2013). Measuring leaf chlorophyll concentration from its color: A way in monitoring environment change to plantations. In AIP conference proceedings,. 1554, 210-213. https://doi.org/10.1063/1.4820322 CR - Smrke, T., Stajner, N., Cesar, T., Veberic, R., Hudina, M., & Jakopic, J. (2023). Correlation between destructive and non-destructive measurements of highbush blueberry (Vaccinium corymbosum L.) fruit during maturation. Horticulturae, 9(4), 501. https://doi.org/10.3390/horticulturae9040501 CR - Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114(2), 511-515. https://doi.org/10.1016/j.foodchem.2008.09.080 CR - Vieira, L. M., Marinho, L. M. G., Rocha, J. D. C. G., Barros, F. A. R., & Stringheta, P. C. (2018). Chromatic analysis for predicting anthocyanin content in fruits and vegetables. Food Science and Technology, 39, 415-422. https://doi.org/10.1590/fst.32517 CR - Yan, Y., Pico, J., Gerbrandt, E. M., Dossett, M., & Castellarin, S. D. (2023). Comprehensive anthocyanin and flavonol profiling and fruit surface color of 20 blueberry genotypes during postharvest storage. Postharvest Biology and Technology, 199, 112274. https://doi.org/10.1016/j.postharvbio.2023.112274 CR - Yang, C., Chen, W., Tang, D., Tan, X., Tan, L., & Tang, Q. (2023). Metabolomic and transcriptomic ınsights into anthocyanin biosynthesis in ‘Ziyan’ tea plants under varied photoperiod and temperature conditions. Agronomy, 14(1), 56. https://doi.org/10.3390/agronomy14010056 CR - Zafra‐Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research, 51(6), 675-683. https://doi.org/10.1002/mnfr.200700002 UR - https://doi.org/10.53663/turjfas.1440608 L1 - https://dergipark.org.tr/en/download/article-file/3743764 ER -