TY - JOUR T1 - Brain-Gut Network in Inflammatory Bowel Diseases and The Role of Vagal Nerve in Neuroinflammation TT - İnflamatuvar Bağırsak Hastalıklarında Beyin-Bağırsak Ağı ve Nöroinflamasyonda Vagal Sinirin Rolü AU - Çalıkuşu, Ayşen AU - Gök Dağıdır, Hale AU - Bukan, Neslihan AU - Bahcelıoglu, Meltem PY - 2024 DA - September Y2 - 2024 JF - Yüksek İhtisas Üniversitesi Sağlık Bilimleri Dergisi JO - YIU Saglik Bil Derg PB - Yüksek İhtisas Üniversitesi WT - DergiPark SN - 2717-8439 SP - 66 EP - 72 VL - 5 IS - 2 LA - en AB - In both normal and pathological situations, the brain and gut communicate. Intestinal inflammation is crucial in the progression of systemic inflammation and neuroinflammation. Inflammatory Bowel Diseases, neurodegeneration, and neuroinflammation all benefit from elucidating the molecular relationships between the gut and the brain. Crohn's disease, ulcerative colitis, and indeterminate colitis are chronic disorders characterized by recurring episodes of gastrointestinal inflammation. Inflammatory bowel disease has evolved into a global disease in the 21st century, affecting around 6.8 million individuals and increasing in prevalence. According to growing evidence using clinical, epidemiological, and experimental data, Inflammatory Bowel Disease predisposes people to central nervous system disorders. The goal of this review is to address current knowledge in inflammatory bowel disorders, to analyze the interconnections between Inflammatory Bowel Diseases and neurodegenerative and neuroinflammatory diseases all along the gut-brain axis, and to emphasize the role of neuroinflammation in Inflammatory Bowel Diseases. Finally, we address vagal nerve stimulation as a potential treatment because it is a critical component of brain-gut interactions and exerts a dual anti-inflammatory role via its afferent and efferent fibers. KW - Keywords: inflammatory bowel diseases KW - brain-gut axis KW - microbiota KW - neuroinflammation KW - neurodegeneration KW - vagal nerve stimulation N2 - Hem normal hem de patolojik durumlarda beyin ve bağırsak iletişim kurar. Bağırsak iltihabı, sistemik iltihaplanma ve nöroinflamasyonun ilerlemesinde çok önemlidir. İnflamatuar Bağırsak Hastalıkları, nörodejenerasyon ve nöroinflamasyonun tümü, bağırsak ve beyin arasındaki moleküler ilişkilerin aydınlatılmasından yararlanır. Crohn hastalığı, ülseratif kolit ve nedeni belli tam olmayan kolit, tekrarlayan gastrointestinal inflamasyon atakları ile karakterize edilen kronik bozukluklardır. İnflamatuar bağırsak hastalığı, 21. yüzyılda yaklaşık 6,8 milyon kişiyi etkileyen ve prevalansı giderek artan küresel bir hastalığa dönüştü. Klinik, epidemiyolojik ve deneysel veriler kullanılarak artan kanıtlara göre İnflamatuar Bağırsak Hastalığı, insanlarda merkezi sinir sistemi bozukluklarına yatkınlık yaratıyor. Bu derlemenin amacı inflamatuar barsak bozukluklarındaki güncel bilgileri ele almak, İnflamatuar Bağırsak Hastalıkları ile bağırsak-beyin ekseni boyunca nörodejeneratif ve nöroinflamatuar hastalıklar arasındaki bağlantıları analiz etmek ve İnflamatuar Bağırsak Hastalıklarında nöroinflamasyonun rolünü vurgulamaktır. Son olarak, vagal sinir stimülasyonunu potansiyel bir tedavi olarak ele alıyoruz çünkü bu, beyin-bağırsak etkileşimlerinin kritik bir bileşenidir ve afferent ve efferent lifleri yoluyla ikili bir anti-inflamatuar rol oynar. CR - 1. Agirman, G., Yu, K. B., & Hsiao, E. Y. (2021). Signaling inflammation across the gut-brain axis. Science, 374(6571), 1087-1092. https://doi.org/10.1126/ science.abi6087 CR - 2. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res, 277, 32-48. https://doi.org/10.1016/j.bbr.2014.07.027 CR - 3. Bostick, J. W., Schonhoff, A. M., & Mazmanian, S. K. (2022). Gut microbiomemediated regulation of neuroinflammation. Curr Opin Immunol, 76, 102177. https://doi.org/10.1016/j.coi.2022.102177 CR - 4. Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., . . . Verdu, E. F. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil, 23(12), 1132-1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x CR - 5. Socala, K., Doboszewska, U., Szopa, A., Serefko, A., Wlodarczyk, M., Zielinska, A., . . . Wlaz, P. (2021). The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res, 172, 105840. https://doi.org/10.1016/j.phrs.2021.105840 CR - 6. Chen, L. M., Bao, C. H., Wu, Y., Liang, S. H., Wang, D., Wu, L. Y., . . . Wu, H. G. (2021). Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation, 18(1), 135. https://doi.org/10.1186/s12974-021-02175-2 CR - 7. Chen, Y., Xu, J., & Chen, Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13(6), 2099. https://doi.org/10.3390/nu13062099 CR - 8. Daulatzai, M. A. (2014). Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res, 39(4), 624-644. https://doi.org/10.1007/s11064-014-1266-6 CR - 9. Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., . . . Xie, P. (2019). The gut microbiome from patients with schizophrenia modulates the glutamateglutamine- GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv, 5(2), eaau8317. https://doi.org/10.1126/sciadv.aau8317 CR - 10. Sharon, G., Cruz, N. J., Kang, D. W., Gandal, M. J., Wang, B., Kim, Y. M., Zink, E. M., Casey, C. P., Taylor, B. C., Lane, C. J., Bramer, L. M., Isern, N. G., Hoyt, D. W., Noecker, C., Sweredoski, M. J., Moradian, A., Borenstein, E., Jansson, J. K., Knight, R., Metz, T. O., … Mazmanian, S. K. (2019). Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 177(6), 1600–1618.e17. https://doi.org/10.1016/j.cell.2019.05.004 CR - 11. Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Bjorksten, B., Engstrand, L., & Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy, 44(6), 842-850. https://doi.org/10.1111/cea.12253 CR - 12. Puricelli, C., Rolla, R., Gigliotti, L., Boggio, E., Beltrami, E., Dianzani, U., & Keller, R. (2021). The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front Psychiatry, 12, 755171. https://doi.org/10.3389/ fpsyt.2021.755171 CR - 13. Park, J., & Cheon, J. H. (2021). Incidence and Prevalence of Inflammatory Bowel Disease across Asia. Yonsei Med J, 62(2), 99-108. https://doi.org/10.3349/ymj.2021.62.2.99 CR - 14. Kaplan, G. G., & Ng, S. C. (2017). Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 152(2), 313-321 e312. https://doi.org/10.1053/j.gastro.2016.10.020 CR - 15. Windsor, J. W., & Kaplan, G. G. (2019). Evolving Epidemiology of IBD. Curr Gastroenterol Rep, 21(8), 40. https://doi.org/10.1007/s11894-019-0705-6 CR - 16. Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol, 17(4),223-237. https://doi.org/10.1038/s41575-019-0258-z CR - 17. Bertani, L., Ribaldone, D. G., Bellini, M., Mumolo, M. G., & Costa, F. (2021). Inflammatory Bowel Diseases: Is There a Role for Nutritional Suggestions? Nutrients, 13(4). https://doi.org/10.3390/nu13041387 CR - 18. Lakatos, P. L., Fischer, S., Lakatos, L., Gal, I., & Papp, J. (2006). Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take “toll” ? World J Gastroenterol, 12(12), 1829-1841. https://doi.org/10.3748/wjg.v12.i12.1829 CR - 19. Kelsen, J. R., & Sullivan, K. E. (2017). Inflammatory Bowel Disease in Primary Immunodeficiencies. Curr Allergy Asthma Rep, 17(8), 57. https://doi.org/10.1007/s11882-017-0724-z CR - 20. Bernstein CN, Fried M, Krabshuis JH, Cohen H, Eliakim R, Fedail S, Gearry R, Goh KL, Hamid S, Khan AG, LeMair AW, Malfertheiner, Ouyang Q, Rey JF, Sood A, Steinwurz F, Thomsen OO, Thomson A, Watermeyer G. World Gastroenterology Organization Practice Guidelines for the diagnosis and management of IBD in 2010. Inflamm Bowel Dis. 2010 Jan;16(1):112-24. https://doi.org/ 10.1002/ibd.21048. PMID: 19653289. CR - 21. Levine, A., Koletzko, S., Turner, D., Escher, J. C., Cucchiara, S., de Ridder, L., Kolho, K. L., Veres, G., Russell, R. K., Paerregaard, A., Buderus, S., Greer, M. L., Dias, J. A., Veereman-Wauters, G., Lionetti, P., Sladek, M., Martin de Carpi, J., Staiano, A., Ruemmele, F. M., Wilson, D. C., … European Society of Pediatric Gastroenterology, Hepatology, and Nutrition (2014). ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. Journal of pediatric gastroenterology and nutrition, 58(6), 795–806. https://doi.org/10.1097/MPG.0000000000000239 CR - 22. Maaser, C., Sturm, A., Vavricka, S. R., Kucharzik, T., Fiorino, G., Annese, V., Calabrese, E., Baumgart, D. C., Bettenworth, D., Borralho Nunes, P., Burisch, J., Castiglione, F., Eliakim, R., Ellul, P., González-Lama, Y., Gordon, H., Halligan, S., Katsanos, K., Kopylov, U., Kotze, P. G., … European Crohn’s and Colitis Organisation [ECCO] and the European Society of Gastrointestinal and Abdominal Radiology [ESGAR] (2019). ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. Journal of Crohn’s & colitis, 13(2), 144–164. https://doi.org/10.1093/ecco-jcc/jjy113 CR - 23. Price, A. B. (1978). Overlap in the spectrum of non-specific inflammatory bowel disease--’colitis indeterminate’. J Clin Pathol, 31(6), 567-577. https://doi.org/10.1136/jcp.31.6.567 CR - 24. Gecse, K. B., & Vermeire, S. (2018). Differential diagnosis of inflammatory bowel disease: imitations and complications. Lancet Gastroenterol Hepatol, 3(9), 644-653. https://doi.org/10.1016/S2468-1253(18)30159-6 CR - 25. Riccio, P., & Rossano, R. (2019). Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients, 11(11). https://doi.org/10.3390/nu11112714 CR - 26. Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol, 17(3), 157-172. https://doi.org/10.1038/s41582-020-00435-y CR - 27. Stojanov, S., Berlec, A., & Strukelj, B. (2020). The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8(11). https://doi.org/10.3390/microorganisms8111715 CR - 28. Zhu, Y., Yuan, M., Liu, Y., Yang, F., Chen, W. Z., Xu, Z. Z., . . . Xu, R. S. (2022). Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. Neural Regen Res, 17(2), 344- 353. https://doi.org/10.4103/1673-5374.317981 CR - 29. Gunther, C., Rothhammer, V., Karow, M., Neurath, M., & Winner, B. (2021). The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci, 22(16). https://doi.org/10.3390/ijms22168870 CR - 30. Zhang, B., Wang, H. E., Bai, Y. M., Tsai, S. J., Su, T. P., Chen, T. J., . . . Chen, M. H. (2021). Inflammatory bowel disease is associated with higher dementia risk: a nationwide longitudinal study. Gut, 70(1), 85-91. https://doi.org/10.1136/gutjnl-2020-320789 CR - 31. Szandruk-Bender, M., Wiatrak, B., & Szelag, A. (2022). The Risk of Developing Alzheimer’s Disease and Parkinson’s Disease in Patients with Inflammatory Bowel Disease: A Meta-Analysis. J Clin Med, 11(13). https:// doi.org/10.3390/jcm11133704 CR - 32. Lee, M., Krishnamurthy, J., Susi, A., Sullivan, C., Gorman, G. H., Hisle-Gorman, E., . . . Nylund, C. M. (2018). Association of Autism Spectrum Disorders and Inflammatory Bowel Disease. J Autism Dev Disord, 48(5), 1523-1529. https://doi.org/10.1007/s10803-017-3409-5 CR - 33. Kim, J. Y., Choi, M. J., Ha, S., Hwang, J., Koyanagi, A., Dragioti, E., . . . Solmi, M. (2022). Association between autism spectrum disorder and inflammatory bowel disease: A systematic review and meta-analysis. Autism Res, 15(2), 340-352. https://doi.org/10.1002/aur.2656 CR - 34. Sadik, A., Dardani, C., Pagoni, P., Havdahl, A., Stergiakouli, E., i, P. A. S. D. W. G., . . . Rai, D. (2022). Parental inflammatory bowel disease and autism in children. Nat Med, 28(7), 1406-1411. https://doi.org/10.1038/s41591-022-01845-9 CR - 35. Craig, C. F., Filippone, R. T., Stavely, R., Bornstein, J. C., Apostolopoulos, V., & Nurgali, K. (2022). Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation, 19(1), 4. https://doi.org/10.1186/s12974-021-02354-1 CR - 36. Butt, M. F., Albusoda, A., Farmer, A. D., & Aziz, Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat, 236(4), 588-611. https://doi.org/10.1111/joa.13122 CR - 37. Meregnani, J., Clarencon, D., Vivier, M., Peinnequin, A., Mouret, C., Sinniger, V., . . . Bonaz, B. (2011). Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci, 160(1-2), 82-89. https://doi.org/10.1016/j.autneu.2010.10.007 CR - 38. Johnston, G. R., & Webster, N. R. (2009). Cytokines and the immunomodulatory function of the vagus nerve. Br J Anaesth, 102(4), 453-462. https://doi.org/10.1093/bja/aep037 CR - 39. Fornaro, R., Actis, G. C., Caviglia, G. P., Pitoni, D., & Ribaldone, D. G. (2022). Inflammatory Bowel Disease: Role of Vagus Nerve Stimulation. J Clin Med, 11(19). https://doi.org/10.3390/jcm11195690 CR - 40. Matteoli, G., Gomez-Pinilla, P. J., Nemethova, A., Di Giovangiulio, M., Cailotto, C., van Bree, S. H., . . . Boeckxstaens, G. E. (2014). A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut, 63(6), 938-948. https://doi.org/10.1136/gutjnl-2013-304676 CR - 41. Bonaz, B. (2022). Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction. Neurogastroenterol Motil,34(10), e14456. https://doi.org/10.1111/nmo.14456 CR - 42. van Schooten, J., Smeets, J., van Kuijk, S. M., Klinkenberg, S., Schijns, O. E. M. G., Nelissen, J., Wagner, L. G. L., Rouhl, R. P. W., Majoie, M. H. J. M., & Rijkers, K. (2023). Surgical complications of vagus nerve stimulation surgery: A 14-years single-center experience. Brain & spine, 4, 102733. https://doi.org/10.1016/j.bas.2023.102733 CR - 43. Jung, B., Yang, C., & Lee, S. H. (2024). Vagus Nerves Stimulation: Clinical Implication and Practical Issue as a Neuropsychiatric Treatment. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology, 22(1), 13–22. https://doi.org/10.9758/cpn.23.1101 CR - 44. Korenblik, V., Brouwer, M. E., Korosi, A., Denys, D., Bockting, C. L. H., Brul, S., & Lok, A. (2022). Are neuromodulation interventions associated with changes in the gut microbiota? A systematic review. Neuropharmacology, 109318. https://doi.org/10.1016/j.neuropharm.2022.109318 CR - 45. Asconape, J. J., Moore, D. D., Zipes, D. P., Hartman, L. M., & Duffell, W. H., Jr. (1999). Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia, 40(10), 1452-1454. https://doi.org/10.1111/j.1528-1157.1999. tb02019.x CR - 46. Yuan, H., & Silberstein, S. D. (2016). Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache, 56(2), 259-266. https://doi.org/10.1111/head.12650 CR - 47. Aggarwal, A., Cutts, T. F., Abell, T. L., Cardoso, S., Familoni, B., Bremer, J., & Karas, J. (1994). Predominant symptoms in irritable bowel syndrome correlate with specific autonomic nervous system abnormalities. Gastroenterology, 106(4), 945-950. https://doi.org/10.1016/0016-5085(94)90753-6 CR - 48. Bonaz, B., Sinniger, V., & Pellissier, S. (2017). Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med, 282(1), 46-63. https://doi.org/10.1111/joim.12611 CR - 49. Kaniusas, E., Kampusch, S., Tittgemeyer, M., Panetsos, F., Gines, R. F., Papa, M., . . . Szeles, J. C. (2019). Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci, 13, 854. https://doi.org/10.3389/fnins.2019.00854 CR - 50. Payne, S. C., Furness, J. B., & Stebbing, M. J. (2019). Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 16(2), 89-105. https://doi.org/10.1038/s41575-018-0078-6 UR - https://dergipark.org.tr/en/pub/yuksekihtisas/issue//1442667 L1 - https://dergipark.org.tr/en/download/article-file/3752938 ER -