TY - JOUR T1 - China Total Energy Consumption Forecast with Optimized Continuous Conformable Fractional Grey Model AU - Bilgil, Halis AU - Erdinç, Ümmügülsüm PY - 2024 DA - December Y2 - 2024 DO - 10.17093/alphanumeric.1447211 JF - Alphanumeric Journal JO - Alphanumeric PB - Muhlis ÖZDEMİR WT - DergiPark SN - 2148-2225 SP - 157 EP - 168 VL - 12 IS - 3 LA - en AB - One of the methods used for forecasting of the time series is the fractional grey modeling approach. In this paper, the OCCFGM(1,1) model is utilized to forecasting of the total energy consumption data of China. The optimal values of $\alpha$ and $r$, which are fractional parameters in the model, are calculated using the Brute Force algorithm. Data collected from official sources from 2013 to 2022 are used to build the forecasting model, while data from 2013 to 2020 are employed to evaluate the accuracy at the model. The obtained results indicate that the OCCFGM(1,1) model exhibits superior forecasting performance compared to the other models under consideration. KW - Conformable fractional calculus KW - Energy consumption KW - Fractional grey model KW - Brute Force KW - Least squares method. KW - OCCFGM CR - Bilgil, H. (2021). New grey forecasting model with its application and computer code. AIMS Mathematics, 6(2), 1497–1514. https://doi.org/10.3934/math.2021091 CR - Deng, J. L. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/s0167-6911(82)80025-x CR - Deng, J. L. (1996). Basic Methods of Grey Systems (4th ed.). Huazhong University of Science, Technology Press. CR - Ding, S., Tao, Z., Zhang, H., & Li, Y. (2022). Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model. Energy, 239, 121928. https://doi.org/10.1016/j.energy.2021.121928 CR - Erdinc, U., Bilgil, H., & Ozturk, Z. (2024). Novel Fractional Forecasting Model for Time Dependent Real World Cases. REVSTAT-Statistical Journal, 169–188. https://doi.org/10.57805/REVSTAT.V22I2.468 CR - Gao, M., Yang, H., Xiao, Q., & Goh, M. (2022). A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector. Renewable Energy, 181, 803–819. https://doi.org/10.1016/j.renene.2021.09.072 CR - Javed, S. A. (2023). Posterior Variance Test: Ex ante Evaluation of Grey Forecasting model. International Journal of Grey Systems, 3(1), 17–28. https://doi.org/10.52812/ijgs.71 CR - Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002 CR - Liu, C., Lao, T., Wu, W.-Z., & Xie, W. (2021). Application of optimized fractional grey modelbased variable background value to predict electricity consumption. Fractals, 29(2), 2150038. https://doi.org/10.1142/s0218348x21500389 CR - Luo, X., Duan, H., & He, L. (2020). A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy. Energy, 205, 118085. https://doi.org/10.1016/j.energy.2020.118085 CR - Ma, X., Wu, W., Zeng, B., Wang, Y., & Wu, X. (2020). The conformable fractional grey system model. ISA Transactions, 96, 255–271. https://doi.org/10.1016/j.isatra.2019.07.009 CR - NBS. (2024, ). National Data. https://data.stats.gov.cn/english/easyquery.htm?cn=C01 CR - Wei, B., Xie, N., & Hu, A. (2018). Optimal solution for novel grey polynomial prediction model. Applied Mathematical Modelling, 62, 717–727. https://doi.org/10.1016/j.apm.2018.06.035 CR - Wu, L., Liu, S., Yao, L., & Yan, S. (2013). The effect of sample size on the grey system model. Applied Mathematical Modelling, 37(9), 6577–6583. https://doi.org/10.1016/j.apm.2013.01.018 CR - Wu, L., Liu, S., Yao, L., Yan, S., & Liu, D. (2013). Grey system model with the fractional order accumulation. Communications in Nonlinear Science and Numerical Simulation, 18(7), 1775–1785. https://doi.org/10.1016/j.cnsns.2012.11.017 CR - Wu, W.-Z. et al. (2022). A time power-based grey model with conformable fractional derivative and its applications. Chaos, Solitons & Fractals, 155, 111657. https://doi.org/10.1016/j.chaos.2021.111657 CR - Wu, W. et al. (2022). A Conformable Fractional Discrete Grey Model CFDGM (1,1) and its Application. International Journal of Grey Systems, 2(1), 5–15. https://doi.org/10.52812/ijgs.36 CR - Wu, W., Ma, X., Zhang, Y., Li, W., & Wang, Y. (2020). A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Science of the Total Environment, 707, 135447. https://doi.org/10.1016/j.scitotenv.2019.135447 CR - Xie, W., Liu, C., Wu, W.-Z., Li, W., & Liu, C. (2020). Continuous grey model with conformable fractional derivative. Chaos, Solitons & Fractals, 139, 110285. https://doi.org/10.1016/j.chaos.2020.110285 CR - Yuxiao, K., Shuhua, M., & Yonghong, Z. (2021). Variable order fractional grey model and its application. Applied Mathematical Modelling, 97, 619–635. https://doi.org/10.1016/j.apm.2021.03.059 CR - Yuxiao, K., Shuhua, M., Yonghong, Z., & Huimin, Z. (2020). Fractional derivative multivariable grey model for nonstationary sequence and its application. Journal of Systems Engineering and Electronics, 31(5), 1009–1018. https://doi.org/10.23919/jsee.2020.000075 CR - Özcan, T. (2017). Application of Seasonal and Multivariable Grey Prediction Models for Short-Term Load Forecasting. Alphanumeric Journal. https://doi.org/10.17093/alphanumeric.359942 CR - Öztürk, Z., Bilgil, H., & Erdinç, Ü. (2022). An optimized continuous fractional grey model for forecasting of the time dependent real world cases. Hacettepe Journal of Mathematics and Statistics, 51(1), 308–326. https://doi.org/10.15672/hujms.939543 UR - https://doi.org/10.17093/alphanumeric.1447211 L1 - https://dergipark.org.tr/en/download/article-file/3772940 ER -