TY - JOUR T1 - In Vitro Evaluation of Selenium Against Some Plant Pathogenic Fungi TT - Selenyumun Bazı Bitki Patojeni Funguslara Karşı In Vitro Değerlendirmesi AU - Derviş, Sibel AU - Özer, Göksel AU - Türkkan, Muharrem AU - Sönmez, Ferit AU - Kabakcı, Hüseyin AU - Alkan, Mehtap PY - 2024 DA - July Y2 - 2024 DO - 10.29278/azd.1452105 JF - Akademik Ziraat Dergisi PB - Ordu University WT - DergiPark SN - 2147-6403 SP - 99 EP - 110 VL - 13 IS - 1 LA - en AB - Objective: Selenium (Se) is garnering interest as a promising environmentally friendly element for controlling fungal pathogens in agricultural production. This study evaluated the impact of Se treatments, comprising sodium selenite (selenite) and sodium selenate (selenate) forms, on the growth of 10 plant pathogenic fungi.Materials and Methods: The impact of Se treatments on the mycelial growth and sporulation of fungi was assessed in in vitro conditions. Probit analysis was used to determine the concentrations of salts that induced a 50% reduction (EC50) in both mycelial growth and sporulation of fungi.Results: At the highest concentration (120 ppm), selenite demonstrated inhibitory effects on mycelial growth across various species, with a reduction in growth ranging from 6.82% to 62.46%. In contrast, selenate exhibited a broader spectrum of inhibition, affecting mycelial growth from 0% to 87.14%. Across different concentrations, Fusarium pseudograminearum displayed the highest sensitivity to selenite (EC50 KW - Na2SeO3 KW - Na2SeO4 KW - antifungal KW - mycelial growth KW - sporulation KW - EC50 N2 - Amaç: Selenyum (Se), tarımsal alanlarda fungal patojenlerini kontrol etmek için umut vaat eden çevre dostu bir element olarak ilgi çekmektedir. Bu çalışmada, sodyum selenit (selenit) ve sodyum selenat (selenat) formlarını içeren Se uygulamalarının 10 farklı bitki patojeni fungus türünün büyümesi üzerindeki etkisi değerlendirilmiştir.Materyal ve Yöntem: Selenyum uygulamalarının fungusların miselyal gelişmesi ve spor oluşumu üzerindeki etkisi in vitro koşullarda değerlendirilmiştir. Probit analizi, fungusların hem miselyal gelişme hem de spor oluşumunda %50 azalmaya (EC50) yol açan tuz konsantrasyonlarını belirlemek için kullanılmıştır.Araştırma Bulguları: En yüksek konsantrasyonda (120 ppm), selenit tüm türlerin miselyal gelişmesini %6.82 ile %62.46 arasında engellemiştir. Buna karşın, selenat daha geniş bir engelleme spektrumu göstermiş ve miselyum büyümesini %0 ile %87.14 arasında etkilemiştir. Farklı konsantrasyonlarda, Fusarium pseudograminearum selenit karşısında (EC50 CR - Agar, G., Alpsoy, L., Bozari, S., Erturk, F. A., & Yildirim, N. (2013). Determination of protective role of selenium against aflatoxin B1-induced DNA damage. Toxicology and Industrial Health, 29, 396−403. https://doi.org/10.1177/0748233711434956 CR - Bhatia, P., Aureli, F., D’Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., & Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chemistry, 140, 225−230. https://doi.org/10.1016/j.foodchem.2013.02.054 CR - Chen, X., Zhang, Z., Gu, M., Li, H., Shohag, M., Shen, F., Wang, X., & Wei, Y. (2020). Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Science of the Total Environment, 748, 141166. https://doi.org/10.1016/j.scitotenv.2020.141166 CR - Cheng, Q., Hu, C., Jia, W., Cai, M., Zhao, Y., Tang, Y., Yang, D., Zhou, Y., Sun, X., & Zhao, X. (2019). Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination. Ecotoxicology and Environmental Safety, 183, 109503. https://doi.org/10.1016/j.ecoenv.2019.109503 CR - Cheng, Q., Jia, W., Hu, C., Shi, G., Yang, D., Cai, M., Zhan, T., Tang, Y., Zhou, Y., Sun, X., & Zhao, X. (2020). Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium. Environmental Pollution, 265, 114827. https://doi.org/10.1016/j.envpol.2020.114827 CR - Companioni, B., Medrano, J., Torres, J. A., Flores, A., Rodríguez, E., & Benavides, A. (2012). Protective action of sodium selenite against Fusarium wilt in tomato: Total protein contents, levels of phenolic compounds and changes in antioxidant potential. In II International Symposium on Soilless Culture and Hydroponics, 947, 321−327. https://doi.org/10.17660/ActaHortic.2012.947.41 CR - Djanaguiraman, M., Devi, D., Shanker, A., Sheeba, J., & Bangarusamy, U. (2005). Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil, 272, 77−86. https://doi.org/10.1007/s11104-004-4039-1 CR - El-Ramady, H., Abdalla, N., Taha, H., Alshaal, T., El-Henawy, A., Faizy, S., Shams, M., Youssef, S., Shalaby, T., Bayoumi, Y., Elhawat, N., Shehata, S., Sztrik, A., Prokisch, J., Fári, M., Domokos-Szabolcsy, É., Pilon-Smits, E., Selmar, D., Haneklaus, S., & Schnug, E. (2016). Selenium and nano-selenium in plant nutrition. Environmental Chemistry Letters, 14, 123−147. https://doi.org/10.1007/s10311-015-0535-1 CR - Espinosa-Ortiz, E. J., Gonzalez-Gil, G., Saikaly, P. E., van Hullebusch, E. D., & Lens, P. N. (2015). Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 99(5), 2405−2418. https://doi.org/10.1007/s00253-014-6127-3 CR - Filek, M., Łabanowska, M., Kurdziel, M., & Sieprawska, A. (2017). Electron paramagnetic resonance (EPR) spectroscopy in studies of the protective effects of 24-epibrasinoide and selenium against zearalenone-stimulation of the oxidative stress in germinating grains of wheat. Toxins, 9, 178. https://doi.org/10.3390/toxins9060178 CR - Golubkina, N., Amagova, Z., Matsadze, V., Zamana, S., Tallarita, A., & Caruso, G. (2020). Effects of arbuscular mycorrhizal fungi on yield, biochemical characteristics, and elemental composition of garlic and onion under selenium supply. Plants, 9(1), 84. https://doi.org/10.3390/plants9010084 CR - Hanson, B., Garifullina, G. F., Lindblom, S. D., Wangeline, A., Ackley, A., Kramer, K., Norton, A. P., Lawrence, C. B., & Pilon-Smits, E. A. H. (2003). Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytologist, 159, 461−469. https://doi.org/10.1046/j.1469-8137.2003.00786.x CR - Hasanuzzaman, M., Hossain, M., & Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-ınduced damage in rapeseed seedlings. Biological Trace Element Research, 143, 1704−1721. https://doi.org/10.1007/s12011-011-8958-4. CR - Jia, W., Hu, C., Ming, J., Zhao, Y., Xin, J., Sun, X., & Zhao, X. (2018). Action of selenium against Sclerotinia sclerotiorum: Damaging membrane system and interfering with metabolism. Pesticide Biochemistry and Physiology, 150, 10−16. https://doi.org/10.1016/j.pestbp.2018.06.003 CR - Kong, L., Wang, M., & Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 45, 155−163. https://doi.org/10.1007/s10725-005-1893-7 CR - Kornaś, A., Filek, M., Sieprawska, A., Bednarska-Kozakiewicz, E., Gawrońska, K., & Miszalski, Z. (2019). Foliar application of selenium for protection against the first stages of mycotoxin infection of crop plant leaves. Journal of the Science of Food and Agriculture, 99, 482−485. https://doi.org/10.1002/jsfa.9145 CR - Li, Q., Xian, L., Yuan, L., Lin, Z., Chen, X., Wang, J., & Li, T. (2023). The use of selenium for controlling plant fungal diseases and insect pests. Frontiers in Plant Science, 14, 1102594. https://doi.org/10.3389/fpls.2023.1102594 CR - Lindblom, S., Fakra, S., Landon, J., Schulz, P., Tracy, B., & Pilon-Smits, E. (2014). Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi--investigation of effects on Se accumulation and speciation. Physiologia Plantarum, 150(1), 107−18. https://doi.org/10.1111/ppl.12094 CR - Liu, K., Cai, M., Hu, C., Sun, X., Cheng, Q., Jia, W., Yang, T., Nie, M., & Zhao, X. (2019). Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environmental Pollution, 254, 113051. https://doi.org/10.1016/j.envpol.2019.113051 CR - Liu, X., Zhao, Z., Duan, B., Hu, C., Zhao, X., & Guo, Z. (2015). Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil, 386, 35−45. https://doi.org/10.1007/s11104-014-2229-z CR - Mao, X., Hua, C., Yang, L., Zhang, Y., Sun, Z., Li, L., & Li, T. (2020). The effects of selenium on wheat fusarium head blight and DON accumulation were selenium compound-dependent. Toxins, 12, 573. https://doi.org/10.3390/toxins12090573 CR - Mecteau, M. R., Joseph, A. R. U. L., & Tweddell, R. J. (2002). Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research, 106(6), 688−696. https://doi.org/10.1017/S0953756202005944 CR - Mehdawi, A., & Pilon-Smits, E. (2012). Ecological aspects of plant selenium hyperaccumulation. Plant Biology, 14(1), 1−10. https://doi.org/10.1111/j.1438-8677.2011.00535.x. CR - Ramadan, S. E., Razak, A.A., Yousseff, Y.A., & Sedky, N.M. (1988). Selenium metabolism in a strain of Fusarium. Biological Trace Element Research, 18, 161−170. https://doi.org/10.1007/BF02917500 CR - Razak, A. A., El-Tantawy, H., El-Sheikh, H. H., & Gharieb, M.M. (1991). Influence of selenium on the efficiency of fungicide action against certain fungi. Biological Trace Element Research, 28, 47−56. https://doi.org/10.1007/BF02990462 CR - Sarma, B. K., Basha, S. A., Singh, D. P., & Singh, U. P. (2007). Use of non-conventional chemicals as an alternative approach to protect chickpea (Cicer arietinum) from Sclerotinia stem rot. Crop Protection, 26(7), 1042−1048. https://doi.org/10.1016/j.cropro.2006.09.015 CR - Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215−216. https://doi.org/10.1080/01621459.1972.10481232 CR - Spallholz, J. E. (1997). Free radical generation by selenium compounds and their prooxidant toxicity. Biomedical and Environmental Sciences: BES, 10(2-3), 260−270. CR - Troni, E., Beccari, G., D’Amato, R., Tini, F., Baldo, D., Senatore, M. T., Beone, G. M., Fontanella, M.C., Prodi, A., Businelli, D., & Covarelli, L. (2021). In vitro evaluation of the inhibitory activity of different selenium chemical forms on the growth of a Fusarium proliferatum strain isolated from rice seedlings. Plants, 10(8),1725. https://doi.org/10.3390/plants10081725 CR - Turakainen, M., Hartikainen, H., & Seppänen, M. (2004). Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry, 52(17), 5378−5382. https://doi.org/10.1021/JF040077X. CR - Türkkan, M., & Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen, 67(2), 83−94. https://doi.org/94. 10.1007/s10343-015-0339-z CR - Türkkan, M. (2013). Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Journal of Agricultural Sciences, 19(3), 178−187. https://doi.org/10.1501/Tarimbil_0000001243 CR - Wu, Z. L., Yin, X. B., Lin, Z. Q., Bañuelos, G. S., Yuan, L. X., Liu, Y., et al. (2014). Inhibitory effect of selenium against Penicillium expansum and its possible mechanisms of action. Current Microbiology, 69, 192−201. https://doi.org/10.1007/s00284-014-0573-0 CR - Wu, Z., Yin, X., Bañuelos, G., Lin, Z., Zhu, Z., Liu, Y., Yuan, L., & Li, M. (2016). Effect of Selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Frontiers in Microbiology, 6, 1441. https://doi.org/10.3389/fmicb.2015.01441 CR - Xu, J., Jia, W., Hu, C., Nie, M., Ming, J., Cheng, Q., Cai, M., Sun, X., Li, X., Zheng, X., Wang, J., & Zhao, X. (2019). Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environmental Pollution, 257, 113495. https://doi.org/10.1016/j.envpol.2019.113495 CR - Zang, H., Ma, J., Wu, Z., Yuan, L., Lin, Z., Zhu, R., Bañuelos, G., Reiter, R., Li, M., & Yin, X. (2022). Synergistic effect of melatonin and selenium ımproves resistance to postharvest gray mold disease of tomato fruit. Frontiers in Plant Science, 13, 903936. https://doi.org/10.3389/fpls.2022.903936 CR - Zhu, Z., Chen, Y. L., Shi, G. Q., & Zhang, X. J. (2017). Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chemistry, 219, 179−184. https://doi.org/10.1016/j.foodchem.2016.09.138 UR - https://doi.org/10.29278/azd.1452105 L1 - https://dergipark.org.tr/en/download/article-file/3791658 ER -