TY - JOUR T1 - Environmentally friendly rapid green synthesis of SeNPs using grapefruit (Citrus paradisi) leaves extract, and their antimicrobial potential AU - Baran, Ayşe PY - 2024 DA - June Y2 - 2024 DO - 10.31015/jaefs.2024.2.8 JF - International Journal of Agriculture Environment and Food Sciences JO - int. j. agric. environ. food sci. PB - Gültekin ÖZDEMİR WT - DergiPark SN - 2618-5946 SP - 315 EP - 326 VL - 8 IS - 2 LA - en AB - The utilisation of plant biomass in the production of nanoparticles is gaining popularity because of its associated benefits. Selenium nanoparticles (SeNPs) are highly valuable due to their involvement in numerous biological functions. In this study, SeNPs were rapidly synthesized using the environmentally friendly and low-cost green synthesis approach using Citrus paradisi (Grapefruit) leaves extract. The synthesized SeNPs were characterized using TEM, AFM, DLS, UV-vis, XRD, and EDX data. The data revealed that SeNPs had a spherical and uniform shape, with an average size of 45 nm, a surface charge of -20.54 mV, and a peak absorbance wavelength of 326 nm. The inhibitory impact of SeNPs on harmful strains and cancer cells was investigated using the microdilution method. The development of bacteria was effectively inhibited at concentrations ranging from 4 to 16 μg /ml. KW - Antimicrobial KW - Anticancer KW - Extract KW - Citrus paradisi KW - Green synthesis KW - SeNPs CR - Adibian, F., Ghaderi, R. S., Sabouri, Z., Davoodi, J., Kazemi, M., Ghazvini, K., Youssefi, M., Soleimanpour, S., & Darroudi, M. (2022). Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. BioMetals, 35(1), 147–158. https://doi.org/10.1007/s10534-021-00356-3 CR - Ahmed, K. B. A., Raman, T., & Veerappan, A. (2016). Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Materials Science and Engineering C, 68, 939–947. https://doi.org/10.1016/j.msec.2016.06.034 CR - Alagesan, V., & Venugopal, S. (2019). Green Synthesis of Selenium Nanoparticle Using Leaves Extract of Withania somnifera and Its Biological Applications and Photocatalytic Activities. BioNanoScience, 9(1), 105–116. https://doi.org/10.1007/s12668-018-0566-8 CR - Alipour, S., Kalari, S., Morowvat, M. H., Sabahi, Z., & Dehshahri, A. (2021). Green Synthesis of Selenium Nanoparticles by Cyanobacterium Spirulina platensis (abdf2224): Cultivation Condition Quality Controls. BioMed Research International, 2021. https://doi.org/10.1155/2021/6635297 CR - Alizadeh, S. R., Seyedabadi, M., Montazeri, M., Khan, B. A., & Ebrahimzadeh, M. A. (2023). Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methyle. Materials Chemistry and Physics, 296(September 2022), 127240. https://doi.org/10.1016/j.matchemphys.2022.127240 CR - Anu, K., Singaravelu, G., Murugan, K., & Benelli, G. (2017). Green-Synthesis of Selenium Nanoparticles Using Garlic Cloves (Allium sativum): Biophysical Characterization and Cytotoxicity on Vero Cells. Journal of Cluster Science, 28(1), 551–563. https://doi.org/10.1007/s10876-016-1123-7 CR - Anupama Prasad, D., Krishna Prasad, D., Shetty, A. V., & Shenoy, S. A. (2023). Evaluation of antimycotic activity of grapefruit leaf extract on Candida species - An in vitro study. Biomedicine (India), 43(1), 413–417. https://doi.org/10.51248/.v43i01.1993 CR - Babu, B., Palanisamy, S., Vinosha, M., Anjali, R., Kumar, P., Pandi, B., Tabarsa, M., You, S. G., & Prabhu, N. M. (2020). Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: antioxidant, antibacterial, and anticancer activities. Bioprocess and Biosystems Engineering, 43(12), 2231–2242. https://doi.org/10.1007/s00449-020-02408-3 CR - Barabadi, H., Webster, T., Vahidi, H., Sabori, H., Damavandi Kamali, K., Jazayeri Shoushtari, F., Mahjoub, M. A., Rashedi, M., Mostafavi, E., Medina Cruz, D., Hosseini, O., & Saravana, M. (2020). Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: A systematic review. Iranian Journal of Pharmaceutical Research, 19(3), 3–17. https://doi.org/10.22037/ijpr.2020.113820.14504 CR - Baran., M. F. (2019). Synthesis , Characterization and Investigation Of Antimicrobial Activity of Silver Nanoparticles From Cydonia Oblonga Leaf. Applıed Ecology and Envıronmental Research, 17(2), 2583–2592. CR - Baran, A., Hatipoğlu, A., Baran, M. firat., & Aktepe, N. (2022). Alıç (Crataegus monogyna) Meyve Özütünden Altın Nanopartiküllerin Sentezi ve Antimikrobiyal Aktivitelerinin Değerlendirilmesi. European Journal of Science and Technology, December. https://doi.org/10.31590/ejosat.1040122 CR - Chellapandian, C., Ramkumar, B., Puja, P., Shanmuganathan, R., Pugazhendhi, A., & Kumar, P. (2019). Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochemistry, 80(October 2018), 58–63. https://doi.org/10.1016/j.procbio.2019.02.009 CR - Chen, J., Li, Y., Fang, G., Cao, Z., Shang, Y., Alfarraj, S., Ali Alharbi, S., Duan, X., Yang, S., & Li, J. (2021). Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arabian Journal of Chemistry, 14(3), 103000. https://doi.org/10.1016/j.arabjc.2021.103000 CR - Chen, N., Yao, P., Zhang, W., Zhang, Y., Xin, N., Wei, H., Zhang, T., & Zhao, C. (2022). Selenium nanoparticles: Enhanced nutrition and beyond. Critical Reviews in Food Science and Nutrition, 0(0), 1–12. https://doi.org/10.1080/10408398.2022.2101093 CR - Chen, W., Li, X., Cheng, H., Zhan, X., & Xia, W. (2023). Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Research International, 164(December 2022), 112435. https://doi.org/10.1016/j.foodres.2022.112435 CR - Chitti Kondal Rao, T., Rosaiah, G., Mangamuri, U. K., Sikharam, A. S., Devaraj, K., Kalagatur, N. K., & Kadirvelu, K. (2022). Biosynthesis of Selenium Nanoparticles from Annona muricata Fruit Aqueous Extract and Investigation of their Antioxidant and Antimicrobial potentials. Current Trends in Biotechnology and Pharmacy, 16(1), 101–107. https://doi.org/10.5530/ctbp.2022.1.10 CR - Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., Balasubramanian, B., & Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-020-80327-9 CR - Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333. https://doi.org/10.1016/j.biomaterials.2011.11.057 CR - Das, P., Dutta, T., Manna, S., Loganathan, S., & Basak, P. (2022). Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): Characterization, anti-bacterial, and anti-cancer studies. Environmental Research, 204(8), 111962. https://doi.org/10.1016/j.envres.2021.111962 CR - Doan, V. D., Thieu, A. T., Nguyen, T. D., Nguyen, V. C., Cao, X. T., Nguyen, T. L. H., & Le, V. T. (2020). Biosynthesis of Gold Nanoparticles Using Litsea cubeba Fruit Extract for Catalytic Reduction of 4-Nitrophenol. Journal of Nanomaterials, 2020, 1–10. https://doi.org/10.1155/2020/4548790 CR - Donga, S., Bhadu, G. R., & Chanda, S. (2020). Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artificial Cells, Nanomedicine and Biotechnology, 48(1), 1315–1325. https://doi.org/10.1080/21691401.2020.1843470 CR - Ezhuthupurakkal, P. B., Polaki, L. R., Suyavaran, A., Subastri, A., Sujatha, V., & Thirunavukkarasu, C. (2017). Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Materials Science and Engineering C, 74, 597–608. https://doi.org/10.1016/j.msec.2017.02.003 CR - Fadl, A. M., El-Kholy, E. M. S., Abulyazid, I., Shoman, A. A., Awad, H. H., & Mohammed, H. S. (2022). Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex. Journal of Cluster Science, 33(6), 2601–2615. https://doi.org/10.1007/s10876-021-02174-6 CR - Ferreyra Maillard, A. P. V., Dalmasso, P. R., López de Mishima, B. A., & Hollmann, A. (2018). Interaction of green silver nanoparticles with model membranes: possible role in the antibacterial activity. Colloids and Surfaces B: Biointerfaces, 171(July), 320–326. https://doi.org/10.1016/j.colsurfb.2018.07.044 CR - Fouda, A., Al-Otaibi, W. A., Saber, T., AlMotwaa, S. M., Alshallash, K. S., Elhady, M., Badr, N. F., & Abdel-Rahman, M. A. (2022). Antimicrobial, Antiviral, and In-Vitro Cytotoxicity and Mosquitocidal Activities of Portulaca oleracea-Based Green Synthesis of Selenium Nanoparticles. Journal of Functional Biomaterials, 13(3). https://doi.org/10.3390/jfb13030157 CR - Gharbavi, M., Mousavi, M., Pour-Karim, M., Tavakolizadeh, M., & Sharafi, A. (2022). Biogenic and facile synthesis of selenium nanoparticles using Vaccinium arctostaphylos L. fruit extract and anticancer activity against in vitro model of breast cancer. Cell Biology International, 46(10), 1612–1624. https://doi.org/10.1002/cbin.11852 CR - Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10(APR), 1–17. https://doi.org/10.3389/fmicb.2019.00931 CR - Gupta, V., Bansal, P., Kumar, P., & Shri, R. (2010). Anxiolytic and antidepressant activities of different extracts from Citrus Paradisi var. Duncan. Asian Journal of Pharmaceutical and Clinical Research, 3(2), 98–100. CR - Hashem, A. H., & Salem, S. S. (2022). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal, 17(2). https://doi.org/10.1002/biot.202100432 CR - Hashem, A. H., Selim, T. A., Alruhaili, M. H., Selim, S., Alkhalifah, D. H. M., Al Jaouni, S. K., & Salem, S. S. (2022). Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste. Journal of Functional Biomaterials, 13(3). https://doi.org/10.3390/jfb13030112 CR - Hatami, R., Javadi, A., & Jafarizadeh-Malmiri, H. (2020). Effectiveness of six different methods in green synthesis of selenium nanoparticles using propolis extract: Screening and characterization. Green Processing and Synthesis, 9(1), 685–692. https://doi.org/10.1515/gps-2020-0065 CR - Hatzikioseyian, A., Saikia, S., & Lens, P. N. L. (2022). Nickel removal by biogenic selenium nanoparticles (SeNPs): Characterization and simulation of non-symmetric breakthrough curves in continuous-flow packed-bed columns. Environmental Nanotechnology, Monitoring and Management, 18(July), 100729. https://doi.org/10.1016/j.enmm.2022.100729 CR - Hosny, M., Fawzy, M., Abdelfatah, A. M., Fawzy, E. E., & Eltaweil, A. S. (2021). Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Advanced Powder Technology, 32(9), 3220–3233. https://doi.org/10.1016/j.apt.2021.07.008 CR - Hosny, M., Fawzy, M., El-Badry, Y. A., Hussein, E. E., & Eltaweil, A. S. (2022). Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. Journal of Saudi Chemical Society, 101419. https://doi.org/10.1016/j.jscs.2022.101419 CR - Jha, P., Saraf, A., Rath, D., & Sharma, D. (2017). Green Synthesis and Antimicrobial Property of Gold Nanoparticles : a Review. World Journal of Pharmaceutıcal and Medıcal Research, 3(8), 431–435. CR - Kazemi, M., Akbari, A., Sabouri, Z., Soleimanpour, S., Zarrinfar, H., Khatami, M., & Darroudi, M. (2021). Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess and Biosystems Engineering, 44(6), 1215–1225. https://doi.org/10.1007/s00449-021-02515-9 CR - Kumar, R., Ghoshal, G. Jain, A. and G. M. (2017). Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. Journal of Nanomedicine & Nanotechnology, 8(4), 1–8. https://doi.org/10.4172/2157-7439.1000452 CR - Kumar, B., Smita, K., Galeas, S., Sharma, V., Guerrero, V. H., Debut, A., & Cumbal, L. (2020). Characterization and application of biosynthesized iron oxide nanoparticles using Citrus paradisi peel: A sustainable approach. Inorganic Chemistry Communications, 119(July), 108116. https://doi.org/10.1016/j.inoche.2020.108116 CR - Mariadoss, A. V. A., Saravanakumar, K., Sathiyaseelan, A., Naveen, K. V., & Wang, M. H. (2022). Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microbial Pathogenesis, 167, 105544. https://doi.org/10.1016/j.micpath.2022.105544 CR - Mehravani, B., Ribeiro, A. I., & Zille, A. (2021). Gold nanoparticles synthesis and antimicrobial effect on fibrous materials. Nanomaterials, 11(5), 1–37. https://doi.org/10.3390/nano11051067 CR - Ndwandwe, B. K., Malinga, S. P., Kayitesi, E., & Dlamini, B. C. (2021). Advances in green synthesis of selenium nanoparticles and their application in food packaging. International Journal of Food Science and Technology, 56(6), 2640–2650. https://doi.org/10.1111/ijfs.14916 CR - Padalia, H., & Chanda, S. (2021). Antioxidant and Anticancer Activities of Gold Nanoparticles Synthesized Using Aqueous Leaf Extract of Ziziphus nummularia. BioNanoScience, 11(2), 281–294. https://doi.org/10.1007/s12668-021-00849-y CR - Perumal, S., Gopal Samy, M. V., & Subramanian, D. (2021). Selenium nanoparticle synthesis from endangered medicinal herb (Enicostema axillare). Bioprocess and Biosystems Engineering, 44(9), 1853–1863. https://doi.org/10.1007/s00449-021-02565-z CR - Pon Matheswari, P., Jenit Sharmila, G., & Murugan, C. (2022). Green synthesis of selenium nanoparticles using Delonix regia and Nerium oleander flower extract and evaluation of their antioxidant and antibacterial activities. Inorganic and Nano-Metal Chemistry, 0(0), 1–12. https://doi.org/10.1080/24701556.2021.2025099 CR - Puri, A., & Patil, S. (2022). Tinospora cordifolia Stem Extract-mediated Green Synthesis of Selenium Nanoparticles and its Biological Applications. Pharmacognosy Research, 14(3), 289–296. https://doi.org/10.5530/pres.14.3.42 CR - Ramamurthy, C. H., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. (2013). Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 36(8), 1131–1139. https://doi.org/10.1007/s00449-012-0867-1 CR - Ranjitha, V. R., & Rai, V. R. (2021). Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. Journal of Pharmaceutical Investigation, 51(2), 117–135. https://doi.org/10.1007/s40005-020-00510-y CR - Remya, R. R., Rajasree, S. R. R., Aranganathan, L., & Suman, T. Y. (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports, 8, 110–115. https://doi.org/10.1016/j.btre.2015.10.004 CR - Rolim, W. R., Pelegrino, M. T., de Araújo Lima, B., Ferraz, L. S., Costa, F. N., Bernardes, J. S., Rodigues, T., Brocchi, M., & Seabra, A. B. seabra. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463, 66–74. https://doi.org/10.1016/j.apsusc.2018.08.203 CR - Saranya, T., Ramya, S., Kavithaa, K., Paulpandi, M., Cheon, Y. P., Harysh Winster, S., Balachandar, V., & Narayanasamy, A. (2022). Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer. Journal of Cluster Science, 0123456789. https://doi.org/10.1007/s10876-022-02334-2 CR - Saravanakumar, K., Sathiyaseelan, A., Zhang, X., Park, S., & Wang, M. H. (2022). Purinoceptor Targeted Cytotoxicity of Adenosine Triphosphate‐Conjugated Biogenic Selenium Nanoparticles in Human Colon Cancer Cells. Pharmaceuticals, 15(5). https://doi.org/10.3390/ph15050582 CR - Shin, S., Saravanakumar, K., Mariadoss, A. V. A., Hu, X., Sathiyaseelan, A., & Wang, M. H. (2022). Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities. Journal of Nanostructure in Chemistry, 12(1), 23–32. https://doi.org/10.1007/s40097-021-00397-7 CR - Shirmehenji, R., Javanshir, S., & Honarmand, M. (2021). A Green Approach to the Bio-based Synthesis of Selenium Nanoparticles from Mining Waste. Journal of Cluster Science, 32(5), 1311–1323. https://doi.org/10.1007/s10876-020-01892-7 CR - Silva, A., Silva, V., Igrejas, G., Gaivão, I., Aires, A., Klibi, N., Dapkevicius, M. de L. E., Valentão, P., Falco, V., & Poeta, P. (2021). Valorization of winemaking by-products as a novel source of antibacterial properties: New strategies to fight antibiotic resistance. Molecules, 26(8), 1–19. https://doi.org/10.3390/molecules26082331 CR - Srivastava, N., & Mukhopadhyay, M. (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38(9), 1723–1730. https://doi.org/10.1007/s00449-015-1413-8 CR - Tripathi, R. M., Hameed, P., Rao, R. P., Shrivastava, N., Mittal, J., & Mohapatra, S. (2020). Biosynthesis of Highly Stable Fluorescent Selenium Nanoparticles and the Evaluation of Their Photocatalytic Degradation of Dye. BioNanoScience, 10(2), 389–396. https://doi.org/10.1007/s12668-020-00718-0 CR - Vu, T. T., Nguyen, P. T. M., Pham, N. H., Le, T. H., Nguyen, T. H., Do, D. T., & La, D. D. (2022). Green Synthesis of Selenium Nanoparticles Using Cleistocalyx operculatus Leaf Extract and Their Acute Oral Toxicity Study. Journal of Composites Science, 6(10). https://doi.org/10.3390/jcs6100307 CR - Vundela, S. R., Kalagatur, N. K., Nagaraj, A., Kadirvelu, K., Chandranayaka, S., Kondapalli, K., Hashem, A., Abd_Allah, E. F., & Poda, S. (2022). Multi-Biofunctional Properties of Phytofabricated Selenium Nanoparticles From Carica papaya Fruit Extract: Antioxidant, Antimicrobial, Antimycotoxin, Anticancer, and Biocompatibility. Frontiers in Microbiology, 12(February), 1–19. https://doi.org/10.3389/fmicb.2021.769891 CR - Webster, T. J. (2020). Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles ( AuNPs ) and Their Biomedical Applications. International Journal OfNanomedicine, 15, 275–300. CR - Wongpreecha, J., Polpanich, D., Suteewong, T., Kaewsaneha, C., & Tangboriboonrat, P. (2018). One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydrate Polymers, 199(July), 641–648. https://doi.org/10.1016/j.carbpol.2018.07.039 CR - Younas, M., Rasool, M. H., Khurshid, M., Khan, A., Nawaz, M. Z., Ahmad, I., & Lakhan, M. N. (2023). Moringa oleifera leaf extract mediated green synthesis of silver nanoparticles and their antibacterial effect against selected gram-negative strains. Biochemical Systematics and Ecology, 107(January), 104605. https://doi.org/10.1016/j.bse.2023.104605 CR - Zeraatkar, S., Tahan, M., Sadeghian, H., Nazari, R., Behmadi, M., & Hosseini Bafghi, M. (2022). Effect of biosynthesized selenium nanoparticles using Nepeta extract against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Journal of Basic Microbiology, November 2022, 210–222. https://doi.org/10.1002/jobm.202200513 UR - https://doi.org/10.31015/jaefs.2024.2.8 L1 - https://dergipark.org.tr/en/download/article-file/3806059 ER -