TY - JOUR T1 - Prediction of Scoliosis Risk in Adolescents with Machine Learning Models AU - Çınar, Murat Ali AU - Küçükcan, İbrahim PY - 2024 DA - May Y2 - 2024 JF - Artificial Intelligence Theory and Applications JO - AITA PB - İzmir Bakırçay Üniversitesi WT - DergiPark SN - 2757-9778 SP - 33 EP - 42 VL - 4 IS - 1 LA - en AB - When examining classifications related to scoliosis, "Idiopathic Scoliosis" emerges as the most prevalent type. Alongside spinal alterations, patients with scoliosis experience changes in stability and gait while standing. Although there are existing studies in the literature regarding the progression of scoliosis and its impact on plantar pressure among individuals diagnosed with adolescent idiopathic scoliosis, no studies have been found on predicting scoliosis risk in healthy adolescents. This study aims to develop a decision support system based on artificial neural networks (ANN) capable of predicting scoliosis risk in adolescents using foot pressure analysis values and machine learning models.The study included 20 patients diagnosed with Adolescent Idiopathic Scoliosis and 43 healthy adolescent individuals with similar demographic characteristics (totaling 63 patients). Plantar pressure distributions of all participants were measured statically and dynamically.Data collected for all patients included: age, gender, right hindfoot static plantar pressure percentage, left hindfoot static plantar pressure percentage, right forefoot static plantar pressure percentage, left forefoot static plantar pressure percentage, right foot dynamic plantar pressure percentage, and left foot dynamic plantar pressure percentage. A dataset was compiled with pressure percentages and the presence of scoliosis diagnosis information (comprising 8 input variables and 1 result variable for each patient).The top performers in predicting adolescent idiopathic scoliosis risk were determined to be: Subspace KNN (100%), RUS Boosted Trees (100%), Weighted KNN (100%), Bagged Trees (100%), and Fine KNN (100%). KW - Adolescent idiopathic scoliosis KW - plantar pressure distribution KW - machine learning CR - [1] Negrini, S., Donzelli, S., Aulisa, A. G., Czaprowski, D., Schreiber, S., de Mauroy, J. C., ... & Zaina, F. (2018). 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis and Spinal Disorders, 13, 1-48. CR - [2] Choudhry, M. N., Ahmad, Z., & Verma, R. (2016). Adolescent Idiopathic Scoliosis. The Open Orthopaedics Journal, 10(1), 143. https://doi.org/10.2174/1874325001610010143 CR - [3] Zagalaz-Anula, N., León-Morillas, F., Andradre-Ortega, J. A., Ibáñez-Vera, A. J., de Oliveira Sousa, S. L., & Lomas-Vega, R. (2020). Case Report: Conservative Treatment of Adolescent Idiopathic Scoliosis Can Alter the Perception of Verticality. A Preliminary Study. Frontiers in Pediatrics, 8, 609555. https://doi.org/10.3389/FPED.2020.609555 CR - [4] Gámiz-Bermúdez, F., Obrero-Gaitán, E., Zagalaz-Anula, N., & Lomas-Vega, R. (2022). Corrective exercise-based therapy for adolescent idiopathic scoliosis: Systematic review and meta-analysis. Clinical Rehabilitation, 36(5), 597-608. CR - [5] Szopa, A., & Domagalska-Szopa, M. (2017). Correlation between respiratory function and spine and thorax deformity in children with mild scoliosis. Medicine, 96(22). CR - [6] Negrini, S., Aulisa, A. G., Aulisa, L., Circo, A. B., De Mauroy, J. C., Durmala, J., ... & Maruyama, T. (2012). 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis, 7(1), 1-35. CR - [7] Daryabor, A., Arazpour, M., Sharifi, G., Bani, M. A., Aboutorabi, A., & Golchin, N. (2017). Gait and energy consumption in adolescent idiopathic scoliosis: A literature review. Ann Phys Rehabil Med., 60(2), 107–116. doi: 10.1016/j.rehab.2016.10.008 CR - [8] Park, H. J., Sim, T., Suh S. W., Yang, J. H., Koo, H., & Mun, J. H. (2016). Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. Eur Spine J., 25, 385 –394. doi: 10.1007/s00586-015-3931-0 CR - [9] Hmida, J., Tomschi, F., Strauss, A. C., & Hilberg, T. (2023). Relationship between foot pressure and spinal parameters in healthy adults–A systematic review. Gait & Posture. CR - [10] Arslan, M., & Görgü, S. Ö. (2023). Effect of short-term spinal orthosis and insoles application on cobb angle, plantar pressure and balance in individuals with adolescent idiopathic scoliosis. Clinical Biomechanics, 110, 106121. CR - [11] Yağcı, G., & Yakut, Y. (2017). Effects of A Spinal Brace on The Functional Profile of The Feet in Adolescent Idiopathic Scoliosis. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, (4), 207-213. CR - [12] Altun, Y., Dilek, B., & Yakut, Y. (2021). Effects of brace on pedobarographic parameters in individuals with adolescent idiopathic scoliosis. Journal of Exercise Therapy and Rehabilitation, 8(1), 44-53. CR - [13] Gruić, I., Cebović, K., & Medved, V. (2016, November). Comparison of pedobarographic profile in young males with left and right scoliotic posture. In International Congress on Sport Sciences Research and Technology Support (Vol. 2, pp. 89-95). SCITEPRESS. CR - [14] Xu, L., Wu, Z., Xia, C., Tang, N., Cheng, J. C., Qiu, Y., & Zhu, Z. (2019). A genetic predictive model estimating the risk of developing adolescent idiopathic scoliosis. Current Genomics, 20(4), 246-251. CR - [15] Lenz, M., Oikonomidis, S., Harland, A., Fürnstahl, P., Farshad, M., Bredow, J., ... & Scheyerer, M. J. (2021). Scoliosis and Prognosis—a systematic review regarding patient-specific and radiological predictive factors for curve progression. European Spine Journal, 30, 1813-1822. CR - [16] Lv, Z., Lv, W., Wang, L., & Ou, J. (2023). Development and validation of machine learning-based models for prediction of adolescent idiopathic scoliosis: A retrospective study. Medicine, 102(14), e33441. UR - https://dergipark.org.tr/en/pub/aita/issue//1458416 L1 - https://dergipark.org.tr/en/download/article-file/3819625 ER -