@article{article_1460580, title={Matematiksel Soyutlama ve Problem Çözme Dinamikleri: Matematik Öğretmen Adaylarının Performansları}, journal={Türk Eğitim Değerlendirmeleri Dergisi}, volume={4}, pages={30–46}, year={2023}, author={Arslan, Zeynep and Unal, Hasan}, keywords={problem solving, mathematical abstraction, Mathematics education, multiple path problem solving, generalization}, abstract={Bu çalışmanın amacı, matematikte çoklu yoldan problem çözme ile matematiksel soyutlama arasındaki bağlantıyı incelemektir. Bir başka deyişle farklı yollardan bir problemin çözümü ile o problemin çözümünün soyutlanması (genellenmesi) arasındaki ilişkinin nasıl olduğu araştırılmıştır. Soyutlama, kavramsal anlamanın temelini oluşturmaktadır. Matematiksel soyutlama, çok boyutlu bir kavram olup, bunlardan bir tanesi genelleme olarak ifade edilebilir. Soyutlama, sürekli ilerleme kaydetmektedir, şöyle ki geometriyi ilk soyutlama evresine taşıyan, aksiyomatik yapısını kuran Öklid ile başlayıp, pek çok bilim adamı (Lobachevsky, Bolyai ve Gauss) tarafından Öklid dışı geometriler de genelleştirilmiştir ve yeni geometriler genelleştirilmeye devam edilecektir. Öğrencilerin matematiksel soyutlama evresine geçişlerini sağlamak defalarca hesaplama yapmaktan daha etkilidir. Bu araştırmada problem çözme dinamiklerindeki soyutlama evresine geçişleri tespit etmek için tarama modeli kullanılmıştır. Çalışmanın katılımcıları, Marmara bölgesinde bir devlet üniversitesinde ilköğretim matematik öğretmenliği programına kayıtlı öğretmen adayları oluşturmaktadır. Bireysel çözümler ile matematiksel soyutlama evresine geçiş dinamiklerini incelemek için matematik öğretmen adaylarına geometri öğrenme alanına ait dörtgende açılar kavramına yönelik çoklu yoldan çözülebilen (en az yedi yol) bir problem verilmiş, katılımcılar cevapları yazılı olarak toplanmıştır. Veri analizinde doküman analizi kullanılmıştır. Analiz sonucu kategoriler oluşturulmuş olup, soyutlama evresine geçip geçemeyenler, sonrasında geçenlerden bağlantı kurdukları bireysel çözümler ve matematiksel soyutlama boyutu arasında ilişkilendirme düzeyleri, bununla birlikte katılımcıların soyutlama evresine geçişteki kullandıkları patikalardaki farklılıklar değerlendirilmiştir. Her öğrencinin farklı öğrenme stiline, algılama düzeyi, perspektifinin olduğu göz önünde bulundurulmasının önemi vurgulamıştır.}, number={4}, publisher={Istanbul Medipol University}