TY - JOUR T1 - LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ TT - Effect of Fiber Consumption on Cortisol Levels and HPA Axis in Pregnancy AU - Yılmaz, Dursun Alper AU - Çağıran, İbrahim Hakkı AU - Yıldız, Metin AU - Yıldırım, Mehmet Salih AU - Dege, Gökhan PY - 2024 DA - April Y2 - 2024 DO - 10.5281/zenodo.10929553 JF - Journal of Midwifery and Health Sciences JO - Ebelik ve Sağlık Bilimleri Dergisi PB - Ataturk University WT - DergiPark SN - 2687-2110 SP - 187 EP - 194 VL - 7 IS - 1 LA - tr AB - Zararlı bir uyaranın algılanması sırasında savaş ya da kaç tepkisine bir adaptasyon olarak gelişen stres, bazı koşullar altında (sinir, endokrin ve bağışıklık sistemleri dahil) zararlı olabilecek bir dizi fizyolojik tepkiyi uyarır. Bu tepkiler arasında hipotalamus- hipofiz- adrenal aksının hiperaktivitesi, depresif hastalarda en yaygın görülen nörobiyolojik değişikliklerden biridir. Özellikle gebelikte depresyon, ruh sağlığını tehlikeye atan sinsi bir halk sağlığı sorunudur. Ciddiye alınmadığı durumlarda intihara kadar giden vakalar ile karşılaşılabilmektedir. Doğum öncesi depresyonun olumsuz sonuçları yalnız annede değil, ileri dönemde çocuk üzerinde de görülmektedir. Gebeliğe bağlı depresyon, genellikle birden çok sebebe bağlı olup birçok farklı fizyolojik etkenle ilişkilidir. Hamilelik sırasında ortaya çıkan fizyolojik kaymalar, maternal stres koruma mekanizmasında hipotalamus- hipofiz- adrenal aksı düzensizliği ve kortizolün aşırı salgılanması gibi değişikliklerin oluşmasına sebep olur. Vücudun strese gösterdiği tepkiyle ilişkili olan aşırı kortizol salınımı, gebelik süresince görülen depresif belirtilerle ilişkilidir. Yakın zamanda yapılan çalışmalar belirli diyet etkenlerinin özellikle diyet liflerinin, stres hormonunu zayıflattığını vurgulamaktadır. Vücuda alınan diyet lifi, bağırsak bakterileri vasıtasıyla sindirilir ve kısa zincirli yağ asitlerinin ortaya çıkarılmasını sağlar. Söz konusu metabolitlerin hipotalamus- hipofiz- adrenal aksı başta olmak üzere pek çok değişik nörolojik fonksiyonu etkilediği düşünülmektedir. Bu derleme makale, kortizol salınımnda rol oynadığı düşünülen lif tüketiminin yaptığı değişiklikleri belirlemeyi hedeflemektedir KW - depresyon KW - diyet posası KW - gebelik KW - pituiter-adrenal sistem N2 - Stress, which develops as an adaptation to the fight-or-flight response during the perception of a noxious stimulus, stimulates a range of physiological responses that may be harmful under certain conditions (including the nervous, endocrine, and immune systems). Among these responses, hyperactivity of the hypothalamic-pituitary-adrenal axis is one of the most common neurobiological changes in depressed patients. Depression, especially during pregnancy, is an insidious public health problem that jeopardizes mental health. In cases where it is not taken seriously, cases leading to suicide may be encountered. Negative consequences of prenatal depression are seen not only in the mother but also in the child in the future. Pregnancy-related depression is usually due to multiple causes and is associated with many different physiological factors. Physiological shifts that occur during pregnancy cause changes in the maternal stress protection mechanism such as hypothalamic-pituitary-adrenal axis dysregulation and excessive secretion of cortisol. Excessive cortisol secretion, which is associated with the body's response to stress, is associated with depressive symptoms during pregnancy. Recent studies emphasize that certain dietary factors, especially dietary fibers, weaken the stress hormone. Dietary fiber taken into the body is digested by intestinal bacteria and ensures the release of short-chain fatty acids. These metabolites are thought to affect many different neurological functions, including the hypothalamus-pituitary-adrenal axis. This review article aims to determine the changes made by fiber consumption, which is thought to play a role in cortisol release. CR - Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252. https://doi.org/10.1038/382250a0 CR - Basu, T., Maguire, J., & Salpekar, J. A. (2021). Hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Neuroscience letters. 135618. https://doi.org/10.1016/j.neulet.2020.135618 CR - Bates, S. H., & Myers, M. G., Jr (2003). The role of leptin receptor signaling in feeding and neuroendocrine function. Trends in endocrinology and metabolism: TEM, 14(10), 447–452. https://doi.org/10.1016/j.tem.2003.10.003 CR - Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological psychiatry, 82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031 CR - Căpriţă, A., Căpriţă, R., Simulescu, V. O. G., & Drehe, R. M. (2010). Dietary fiber: Chemical and functional properties. Journal of Agroalimentary Processes and Technologies, 16(4), 406-416. CR - Chen, Y., & Baram, T. Z. (2016). Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 41(1), 197–206. https://doi.org/10.1038/npp.2015.181 CR - Abell, J. G., Shipley, M. J., Ferrie, J. E., Kivimäki, M., & Kumari, M. (2016). Recurrent short sleep, chronic insomnia symptoms and salivary cortisol: A 10-year follow-up in the Whitehall II study. Psychoneuroendocrinology, 68, 91–99. https://doi.org/10.1016/j.psyneuen.2016.02.021 CR - Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 13(43):1-21. https://doi.org/10.1186/s12970-016-0155-6 CR - Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature reviews. Gastroenterology & hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3 CR - Dinan, T. G., & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9), 1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007 CR - Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron, 22(2), 221–232. https://doi.org/10.1016/s0896-6273(00)81084-3 CR - Farzi, A., Fröhlich, E. E., & Holzer, P. (2018). Gut Microbiota and the Neuroendocrine System. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 15(1), 5–22. https://doi.org/10.1007/s13311-017-0600-5 CR - Fatahi, S., Matin, S. S., Sohouli, M. H., Găman, M. A., Raee, P., Olang, B., Kathirgamathamby, V., Santos, H. O., Guimarães, N. S., & Shidfar, F. (2021). Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies. Complementary therapies in medicine, 56, 102621. https://doi.org/10.1016/j.ctim.2020.102621 CR - Food and Drug Administration (FDA). 2015. U.S. food and drug administration nutrition facts. Available at: https://www.fda.gov/food/labelingnutrition CR - Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305-312. https://doi.org/10.1016/j.tins.2013.01.005 CR - Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395(6704), 763–770. https://doi.org/10.1038/27376 CR - Gropper, S. S., Smith, J. L., & Grodd, J. L. (2019). Advanced nutrition and human metabolism. Belmont, CA: Thomson Wadsworth (pp. 260-275). ISBN 978-0-534-55986-1. CR - Holscher H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756 CR - Jiang, X., Lu, N., Xue, Y., Liu, S., Lei, H., Tu, W., Lu, Y., & Xia, D. (2019). Crude fiber modulates the fecal microbiome and steroid hormones in pregnant Meishan sows. General and comparative endocrinology, 277, 141–147. https://doi.org/10.1016/j.ygcen.2019.04.006 CR - Krishna, G., & Muralidhara (2015). Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicology and teratology, 49, 49–58. https://doi.org/10.1016/j.ntt.2015.03.003 CR - Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. https://doi.org/10.3390/nu2121266 CR - Maras, P. M., Molet, J., Chen, Y., Rice, C., Ji, S. G., Solodkin, A., & Baram, T. Z. (2014). Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Molecular psychiatry, 19(7), 811–822. https://doi.org/10.1038/mp.2014.12 CR - McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual review of medicine, 62, 431–445. https://doi.org/10.1146/annurev-med-052209-100430 CR - Miki, T., Kochi, T., Eguchi, M., Kuwahara, K., Tsuruoka, H., Kurotani, K., Ito, R., Akter, S., Kashino, I., Pham, N. M., Kabe, I., Kawakami, N., Mizoue, T., & Nanri, A. (2015). Dietary intake of minerals in relation to depressive symptoms in Japanese employees: the Furukawa Nutrition and Health Study. Nutrition (Burbank, Los Angeles County, Calif.), 31(5), 686–690. https://doi.org/10.1016/j.nut.2014.11.002 CR - Mohajeri, M. H., Brummer, R., Rastall, R. A., Weersma, R. K., Harmsen, H., Faas, M., & Eggersdorfer, M. (2018). The role of the microbiome for human health: from basic science to clinical applications. European journal of nutrition, 57(Suppl 1), 1–14. https://doi.org/10.1007/s00394-018-1703-4 CR - Müller, T. D., Nogueiras, R., Andermann, M. L., Andrews, Z. B., Anker, S. D., Argente, J., Batterham, R. L., Benoit, S. C., Bowers, C. Y., Broglio, F., Casanueva, F. F., D'Alessio, D., Depoortere, I., Geliebter, A., Ghigo, E., Cole, P. A., Cowley, M., Cummings, D. E., Dagher, A., Diano, S., … Tschöp, M. H. (2015). Ghrelin. Molecular metabolism, 4(6), 437–460. https://doi.org/10.1016/j.molmet.2015.03.005 CR - Nyman, M., Asp, N. G., Cummings, J., & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. The British journal of nutrition, 55(3), 487–496. https://doi.org/10.1079/bjn19860056 CR - Orta, O. R., Gelaye, B., Bain, P. A., & Williams, M. A. (2018). The association between maternal cortisol and depression during pregnancy, a systematic review. Archives of women's mental health, 21(1), 43–53. https://doi.org/10.1007/s00737-017-0777-y CR - Osborne, S., Biaggi, A., Chua, T. E., Du Preez, A., Hazelgrove, K., Nikkheslat, N., Previti, G., Zunszain, P. A., Conroy, S., & Pariante, C. M. (2018). Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology, 98, 211–221. https://doi.org/10.1016/j.psyneuen.2018.06.017 CR - Prinelli, F., Fratiglioni, L., Kalpouzos, G., Musicco, M., Adorni, F., Johansson, I., Marseglia, A., & Xu, W. (2019). Specific nutrient patterns are associated with higher structural brain integrity in dementia-free older adults. NeuroImage, 199, 281–288. https://doi.org/10.1016/j.neuroimage.2019.05.066 CR - Rackers, H. S., Thomas, S., Williamson, K., Posey, R., & Kimmel, M. C. (2018). Emerging literature in the Microbiota-Brain Axis and Perinatal Mood and Anxiety Disorders. Psychoneuroendocrinology, 95, 86–96. https://doi.org/10.1016/j.psyneuen.2018.05.020 CR - Rea, K., Dinan, T. G., & Cryan, J. F. (2016). The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of stress, 4, 23–33. https://doi.org/10.1016/j.ynstr.2016.03.001 CR - Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell host & microbe, 17(5), 565–576. https://doi.org/10.1016/j.chom.2015.04.011 CR - Savignac, H. M., Tramullas, M., Kiely, B., Dinan, T. G., & Cryan, J. F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural brain research, 287, 59–72. https://doi.org/10.1016/j.bbr.2015.02.044 CR - Schmidt, K., Cowen, P. J., Harmer, C. J., Tzortzis, G., Errington, S., & Burnet, P. W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793–1801. https://doi.org/10.1007/s00213-014-3810-0 CR - Seth, S., Lewis, A. J., & Galbally, M. (2016). Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: a systematic literature review. BMC pregnancy and childbirth, 16(1), 124. https://doi.org/10.1186/s12884-016-0915-y CR - Sharma, S. K., Bansal, S., Mangal, M., Dixit, A. K., Gupta, R. K., & Mangal, A. K. (2016). Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review. Critical reviews in food science and nutrition, 56(10), 1647–1661. https://doi.org/10.1080/10408398.2013.794327 CR - Sidhu, G. S., Sidhu, T. K., Kaur, P., Lal, D., & Sangha, N. K. (2019). Evaluation of Peripartum Depression in Females. International journal of applied & basic medical research, 9(4), 201–205. https://doi.org/10.4103/ijabmr.IJABMR_23_19 CR - Sugiyama, F., Yamaguchi, T., Hu, A., Kobayashi, A., & Kobayashi, H. (2017). Effects of fiber supplementation for four weeks on athletic performance in Japanese college athletes: A case study—measurement of the athletic performance, salivary biomarkers of stress, and mood, affect balance. Health, 9(03), 556. https://doi.org/10.4236/health.2017.93039 CR - Szpunar, M. J., & Parry, B. L. (2018). A systematic review of cortisol, thyroid-stimulating hormone, and prolactin in peripartum women with major depression. Archives of women's mental health, 21(2), 149–161. https://doi.org/10.1007/s00737-017-0787-9 CR - Torres-Velázquez, M., Sawin, E. A., Anderson, J. M., & Yu, J. J. (2019). Refractory diet-dependent changes in neural microstructure: Implications for microstructural endophenotypes of neurologic and psychiatric disease. Magnetic resonance imaging, 58, 148–155. https://doi.org/10.1016/j.mri.2019.02.006 CR - Zielinski, G., DeVries, J. W., Craig, S. A., & Bridges, A. R. (2013). Dietary fiber methods in Codex Alimentarius: Current status and ongoing discussions. Cereal Food World, 58, 148-153. UR - https://doi.org/10.5281/zenodo.10929553 L1 - https://dergipark.org.tr/en/download/article-file/3830001 ER -