TY - JOUR T1 - Higher Dimensional Leibniz-Rinehart Algebras AU - Çetin, Selim AU - Koçak, Mahmut PY - 2024 DA - May Y2 - 2024 DO - 10.33187/jmsm.1466687 JF - Journal of Mathematical Sciences and Modelling PB - Mahmut AKYİĞİT WT - DergiPark SN - 2636-8692 SP - 45 EP - 50 VL - 7 IS - 1 LA - en AB - In this article, we delve into the realm of higher dimensional Leibniz-Rinehart algebras, exploring the intricate structures of Leibniz algebroids and their applications. By generalizing the concept of Lie algebroids and incorporating a Leibniz rule for the anchor map, the study sheds light on the fundamental principles underlying connections and underscores their significance. Through a comprehensive analysis of Leibniz-Rinehart algebras, this study paves the way for advancements and applications, offering a deeper understanding of the intricate relationship between algebraic and geometric structures. KW - Crossed module KW - Leibniz algebra KW - Leibniz algebroid KW - Leibniz-Rinehart algebra KW - Lie-Rineart algebra CR - [1] J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, L’Enseignement Mathematique 39 (1993), 269–292. CR - [2] J.-L. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139–158. CR - [3] T. Jubin, Benoı, N. Poncin, K. Uchino, Free Courant and derived Leibniz pseudoalgebras, J. Geom. Mech., 8(1) (2016) 71–97. CR - [4] A. Aytekin, Categorical structures of Lie-Rinehart crossed module, Turkish J. Math., 43(1) (2019), 511–522. CR - [5] A. B. Hassine, T. Chtioui, M. Elhamdadi, S. Mabrouk, Extensions and Crossed Modules of n-Lie-Rinehart Algebras, Adv. Appl. Clifford Algebr., 32(3) (2022),31. CR - [6] J. M. Casas, M. Ladra, T. Pirashvili, Crossed modules for Lie-Rinehart algebras, Cent. Eur. Journal of Algebra, 274(1) (2004) 192–201. CR - [7] Chen, Liangyun, M. Liu, J. Liu, Cohomologies and crossed modules for pre-Lie Rinehart algebras, J. Geom. Phys., 176 (2022) CR - [8] A. Çobankaya, S. Çetin, Homotopy of Lie-Rinehart Crossed Module Morphisms, Adıyaman University Journal of Science, 9(1) (2019) 202–212. CR - [9] J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math., 408 (1990), 57–113. CR - [10] J. M. Casas, T. Datuashvili, M. Ladra, Left-right noncommutative Poisson algebras, Cent. Eur. J. Math., 12(1) (2014) 57–78. CR - [11] M. Alp, B. Davvaz, Crossed polymodules and fundamental relations, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77(2) (2015), 129–140. CR - [12] H. G. Akay, İ. İ. Akça, Completeness of the category of rack crossed modules, Ikonion J. Math., 4(2) (2022), 56–68. CR - [13] S. Çetin, Utku Gürdal, A characterization of crossed self-similarity on crossed modules in L-algebras, Logic Journal of the IGPL, jzae003 (2024). CR - [14] J. M. Casas, S. Çetin, E. Ö. Uslu, Crossed modules in the category of Loday QD-Rinehart algebras, Homology Homotopy Appl., 22(2) (2020) 347–366. CR - [15] S. Çetin, Leibniz-Rinehart cebirleri ve genellemeleri, Phd Thesis, Eskis¸ehir Osmangazi U¨ niversitesi, Tu¨rkiye, (2017) CR - [16] U. Gürdal, A Jordan-Hölder theorem for crossed squares, Kuwait J. Sci., 50(2) (2023) 83–90. CR - [17] M. H. Gürsoy, H. Aslan, İ. İcen, Generalized crossed modules and group-groupoids, Turkish J. Math., 41(6) (2017) 1535–1551. CR - [18] J. Huebschmann, On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras, J. Geom. Mech., 13(3) (2021) 385–402. CR - [19] O. Mucuk, T. Şahan, Coverings and crossed modules of topological groups with operations, Turkish J. Math., 38(5) (2014) 833–845. CR - [20] A. Mutlu, Join for (Augmented) Simplicial Group, Math. Comput. App., 5(2) (2000) 105–112. CR - [21] S. Öztunç, N. Bildik, A. Mutlu, The construction of simplicial groups in digital images, J. Inequal. Appl., (2013) 1–13. UR - https://doi.org/10.33187/jmsm.1466687 L1 - https://dergipark.org.tr/en/download/article-file/3855008 ER -