TY - JOUR T1 - Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces AU - Tomar, Anita AU - Alam, Khairul Habib AU - Yumnam, Rohen PY - 2025 DA - October Y2 - 2024 DO - 10.15672/hujms.1471688 JF - Hacettepe Journal of Mathematics and Statistics PB - Hacettepe University WT - DergiPark SN - 2651-477X SP - 1708 EP - 1724 VL - 54 IS - 5 LA - en AB - This research explores fixed points for particularly integral type multivalued mappings, in $m^b_v-$metric spaces. Additionally, we study fixed circle problems offering geometric insights into sets of fixed points. This research paper contributes to the evolving field of multivalued mapping results in $m^b_v-$ spaces, drawing inspiration from the framework of Hausdorff. Further, motivated by the wide applications of differential inclusions as set-valued maps, we explore first-order nonlinear differential inclusions in $m_v^b-$metric spaces using established conclusions. KW - differential inclusion KW - fixed circle KW - fixed disc KW - Hausdorff $m_b^v-$metric CR - [1] K. H. Alam and Y. Rohen, Non-self Ciric $\alpha^+(\theta, \psi)$−proximal contractions with best proximity point, Palest. J. Math. 13 (2), 30–40, 2024. CR - [2] K. H. Alam, Y. Rohen, I. A. Kallel and J. Ahmad, Solution of an algebraic linear system of equations using fixed point results in $C^*$−algebra valued extended Branciari $S_b-$metric spaces, Int. J. Anal. Appl. 22, 139, 2024. CR - [3] K. H. Alam, Y. Rohen and N. Saleem, Fixed Points of $(\alpha, \beta, F^*)$ and $(\alpha, \beta, F^{**})$-Weak Geraghty Contractions with an Application, Symmetry, 15 (1), 243, 2023. CR - [4] K. H. Alam, Y. Rohen and A. Tomar, On fixed point and its application to the spread of infectious diseases model in $M^b_v-$metric space, Math. Methods Appl. Sci. 47 (7), 6489–6503, 2024. CR - [5] K. H. Alam, Y. Rohen, A. Tomar and M. Sajid, On geometry of fixed figures via $\varphi-$interpolative contractions and application of activation functions in neural networks and machine learning models, Ain Shams Engineering Journal, 16 (1), 103182, 2025. CR - [6] I. Altun, G. Mnak, Gulhan and H. Dag, Multivalued F−contractions on complete metric spaces, J. Nonlinear Convex Anal. 16 (4), 659–666, 2015. CR - [7] Z. An, M. Li and L. Zhao, Fixed Points and Stability for Integral-Type Multivalued Contractive Mappings, J. Funct. Spaces, 2021, 1–9, 2021. CR - [8] M. Asadi, E. Karapinar, and P. Salimi, New extension of p−metric spaces with some fixed-point results on m−metric spaces, J. Inequal. Appl. 1 (18), 2014. CR - [9] M. Asim, I. Uddin, and M. Imdad, Fixed point results in $M_v-$metric spaces with an application, J. Inequal. Appl. 1(280), 2019. CR - [10] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984. CR - [11] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis, 30, 26–37, 1989. CR - [12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133–181, 1922. CR - [13] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoría dei punti fissi, Boll. Unione Mat. Ital. 5, 103–108, 1972. CR - [14] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 31–37, 2000. CR - [15] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29, 536 pages, 2002. CR - [16] S. Chauhan, M. Imdad, E. Karapnar and B. Fisher, An integral type fixed point theorem for multi-valued mappings employing strongly tangential property, J. Egyptian Math. Soc. 22 (2), 258–264, 2014. CR - [17] B. Damjanovi and D. Dori, Multivalued generalizations of the Kannan fixed point theorem, Filomat, 25 (1), 125–131, 2011. CR - [18] Y. Feing and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317, 103–112, 2006. CR - [19] M. Frigon, Théorémes déxistence de solutions dínclusions différentielles, Topological methods in differential equations and inclusions, Kluwer Academic Publishers, 51–87, 1995. CR - [20] M. Joshi, A. Tomar and T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $\mathcal{S}-$metric spaces, AIMS Math. 8 (2), 4407–4441, 2023. CR - [21] M. Joshi, A. Tomar, H. A. Nabwey, and R. George, On Unique and Nonunique Fixed Points and Fixed Circles in $M_v^b-$Metric Space and Application to Cantilever Beam Problem, J. Funct. Spaces, 1–15, 6681044, 2021. CR - [22] M. Joshi, A. Tomar and I. Uddin, Fixed point in $M^b_v-$metric space and applications, Acta Univ. Sapientiae Math. 15 (2), 272–287, 2023. CR - [23] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959. CR - [24] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69, 2942–2949, 2008. CR - [25] M. Kisielewicz, Differential Inclusions and Optimal Control, Polish Sc. Publishers and Kluwer Academic Publishers, Dordrecht, 1991. CR - [26] Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying contraction conditions of integral type and applications, J. Fixed Point Theory Appl. 64 (1), 2011. CR - [27] Z. D. Mitrovic and S. Radenovic, The Banach and Reich contractions in $b_v(s)-$metric spaces, J. Fixed Point Theory Appl. 4 (19), 3087–3095, 2017. CR - [28] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141, 177–188, 1989. CR - [29] N. Mlaiki, N. Ta and N. Y. Özgür, On the Fixed-Circle Problem and Khan Type Contractions, Axioms, 8, 80, 2018. CR - [30] S. B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (2), 475–488, 1969. CR - [31] A. A. Tolstonogov, Differential Inclusions in Banach Spaces (in Russsian), Sc. Acad. of Sciences, Siberian Branch, Novosibirsk, 1986. CR - [32] N.Y. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43, 2794–2805, 2019. CR - [33] N. Y. Özgür, N. Mlaki, N. Ta, and N. Souayah, A new generalization of metric spaces: rectangular M−metric spaces, Math. Sci. 12, 223–233, 2018. CR - [34] N. Y. Özgur and N. Tas, Some fixed circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, 1433–1449, 2019. CR - [35] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. 2 (5), 571-576, 1972. CR - [36] M. Stojakovi, L. Gaji, T. Doenovi and B. Cari, Fixed point of multivalued integral type of contraction mappings, Fixed Point Theory Appl. 2015, 1–10, 2015. CR - [37] N. Tas, N. Y. Ozgur and N. Mlaiki, New types of $F_c-$contractions and the fixed-circle problem, Mathematics, 6 (10), 188, 2019. CR - [38] N. Ta and N. Özgür, New multivalued contractions and the fixed-circle problem, Afr. Mat. 36, 113, 2025. CR - [39] A. Tomar, M. Joshi, S. K. Padaliya, B. Joshi and A. Dwivedi, Fixed Point under Set-Valued Relation-Theoretic Nonlinear Contractions and Application, Filomat, 33 (14), 4655–4664, 2019. CR - [40] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, 94, 2012. UR - https://doi.org/10.15672/hujms.1471688 L1 - https://dergipark.org.tr/en/download/article-file/3877036 ER -