TY - JOUR T1 - Effect of Lemon Verbena Polyphenol on Glycerol Channel Aquaporin 7 Expression in 3T3-L1 Adipocytes AU - Palabıyık, Orkide AU - Kılıç Toprak, Emine AU - Şumnulu, Deniz AU - Tozkır, Jülide AU - Çört, Ayşegül PY - 2024 DA - August Y2 - 2024 DO - 10.26650/experimed.1479944 JF - Experimed PB - Istanbul University WT - DergiPark SN - 2667-5846 SP - 102 EP - 109 VL - 14 IS - 2 LA - en AB - Objective: Polyphenols are of great interest in obesity prevention approaches. The aquaglyceroporin 7 (AQP7) channel is involved in the transport of glycerol across cell membranes in adipose tissue. This study aimed to explore how lemon verbena (LV) polyphenols affect the expression of the glycerol channels AQP7 and perilipin 1 (PLIN1) in 3T3-L1 hypertrophic adipocytes.Materials and Methods: Hypertrophic adipocyte cells (H) were treated with LV at two different doses of 200 µg/mL (H-LV200) and 400 µg/mL (H-LV400). In addition, 0.1 µM β3-AR agonist (CL316243) and 0.1 µM β3-AR antagonist (L7483337) were applied to the cells at both doses. AQP7 and PLIN1 gene expressions were determined by real time-polymerase chain reaction (RT-PCR), and glycerol levels were determined by enzyme-linked immunosorbent assay (ELISA).Results: Hypertrophic adipocytes showed increased AQP7 and PLIN1 gene expression and glycerol content compared with the control group. H-LV200 and CL316243 treatment together increased AQP7 gene expression, whereas H-LV400 and L7483337 treatment together decreased AQP7 gene expression.Conclusion: The data indicated that both doses of LV inhibited glycerol production by suppressing AQP7 and PLIN1 gene expression. Approaches to regulate AQP7 gene expression in adipose tissue using plant-derived polyphonic compounds are considered a healthy and innovative approach to combat and manage metabolic diseases, including obesity. KW - Polyphenol KW - adipocyte KW - aquaglyceroporin KW - glycerol KW - obesity CR - 1. Zukiewicz-Sobczak W, Wröblewska P, Zwolinski J, Chmielewska-Badora J, Adamczuk P, Krasowska E et al. Obesity and poverty paradox in developed countries. Ann Agric Environ Med 2014; 21(3): 590-4. google scholar CR - 2. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93(1): 359-404. google scholar CR - 3. Herranz-Lopez M, Fernandez-Arroyo S, Perez-Sanchez A, Barrajon-Catalan E, Beltran-Debon R, Menendez JA, et al. Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine 2012; 19(3-4): 253-61. google scholar CR - 4. Fernandez-Arroyo S, Herranz-Lopez M, Beltran-Debon R, Borras-Linares I, Barrajon-Catalan E, Joven J et al. Bioavailability of a polyphenol-enriched extract of Hibiscus sabdariffa in rats and associated antioxidant status. Mol Nutr Food Res 2012; 56(10): 1590-5. google scholar CR - 5. Herranz-Lopez M, Olivares-Vicente M, Boix-Castejon M, Caturla N, Roche E, Micol V. Differential effects of a combination of Hibiscus sabdariffa and Lippia citriodora polyphenols in overweight/obese subjects: A randomised controlled trial. Sci Rep 2019; 9(1): 2999. google scholar CR - 6. Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome in humans: a systematic review. Obes Rev 2016; 17(7): 573-86. google scholar CR - 7. Sânchez-Marzo N, Lozano-Sânchez J, Câdiz-Gurrea MdlL, Herranz-Löpez M, Micol V, Segura-Carretero A. Relationships between the chemical structure and antioxidant activity of phytocompounds isolated from lemon verbena. Antioxidants 2019; 8(8): 324. google scholar CR - 8. Joven J, Rull A, Rodriguez-Gallego E, Camps J, Riera-Borrull M, Hernândez-Aguilera A et al. Multifunctional targets of dietary polyphenols in diseases: A case study of the chemokine network and energy metabolism. Food Chem Toxicol 2013; 51: 267-79. google scholar CR - 9. Herranz-Löpez M, Barrajön-Catalân E, Segura-Carretero A, Menendez JA, Joven J, Micol V. Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms. Phytomedicine 2015; 22(6): 605-14. google scholar CR - 10. da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting metabolic syndrome: the emerging role of aquaglyceroporin. Cell Mol Life Sci 2018; 75(11): 1973-88. google scholar CR - 11. Frühbeck G, Catalân V, Gömez-Ambrosi J, Rodnguez A. Aquaporin-7 and glycerol permeability as novel obesity drug-target pathways. Trends Pharmacol Sci 2006; 27(7): 345-7. google scholar CR - 12. K. Ishibashi, S. Hara, and S. Kondo. Aquaporin water channels in mammals. Clin Exp Nephrol 2009; 13: 107-17. google scholar CR - 13. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 2014; 13(4): 259-77. google scholar CR - 14. da Silva IV, Soveral G. Aquaporins in obesity. In: Yang B, editor. Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore; 2023.p.289-302. google scholar CR - 15. Iena FM, Lebeck J. Implications of aquaglyceroporin 7 in energy metabolism. Int J Mol Sci 2018; 19(1): 154. google scholar CR - 16. Brasaemle DL. The perilipin family of structural lipid droplet proteins: stabilisation of lipid droplets and control of lipolysis. J Lipid Res 2007; 48(12): 2547-59. google scholar CR - 17. MacDougald OA, Burant CF. Obesity and metabolic perturbations after the loss of aquaporin 7, an adipose glycerol transporter. PNAS 2005; 102(31): 10759-60. google scholar CR - 18. Rodriguez A, Catalan V, Gomez-Ambrosi J, Fruhbeck G. Role of aquaporin-7 in the pathophysiological control of fat accumulation in mice. FEBS Lett 2006; 580(20): 4771-6. google scholar CR - 19. Fiorentini D, Zambonin L, Vieceli Dalla Sega F, Hrelia S. Polyphenols as modulators of aquaporin family in health and disease. Oxid Med Cell Longev 2015: 2015: 196914. google scholar CR - 20. Boque N, de la Iglesia R, de la Garza AL, Milagro FI, Olivares M, Banuelos O, et al. Prevention of diet induced obesity by apple polyphenols in W istar rats via regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res 2013; 57(8): 1473-8. google scholar CR - 21. Funes L, Laporta O, Cerdân-Calero M, Micol V. Effects of verbascoside, a phenylpropanoid glycoside from lemon verbena, on phospholipid model membranes. Chem Phys Lipids 2010; 163(2): 190-9. google scholar CR - 22. Green H, Kehinde O. Establishment of a preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell 1975; 5(1): 19-27. google scholar CR - 23. Han CY, Kargi AY, Omer M, Chan CK, Wabitsch M, O’Brien KD, et al. Differential effects of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 2010; 59(2): 386-96. google scholar CR - 24. Tsukatani T, Suenaga H, Shiga M, Ikegami T, Ishiyama M, Ezoe T et al. Rapid susceptibility testing of slowly growing nontuberculous mycobacteria using colorimetric microbial viability assays based on reduced water-soluble tetrazolium WST-1. Eur J Clin Microbiol Infect Dis 2015; 34(10): 1965-73. google scholar CR - 25. Ji E, Jung M, Park J, Kim S, Seo C, Park K et al. Inhibition of adipogenesis in 3T3-L1 cells and suppression of abdominal fat accumulation in high-fat diet fed C57BL/6J mice after downregulation of hyaluronic acid. Int J Obes 2014; 38(8): 1035-43. google scholar CR - 26. Han CY, Subramanian S, Chan CK, Omer M, Chiba T, Wight TN, et al. Adipocyte-derived serum amyloid A3 and hyaluronan play roles in monocyte recruitment and adhesion. Diabetes 2007; 56(9): 2260-73. google scholar CR - 27. Shen FX, Gu X, Pan W, Li WP, Li W, Ye J, et al. Over-expression of AQP7 contributes to improve insulin resistance in adipocytes. Exp Cell Res 2012; 318(18): 2377-84. google scholar CR - 28. Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N et al. Aquaporin adipose, a putative glycerol channel in adipocytes. J Biol Chem 2000; 275(27): 20896-902. google scholar CR - 29. Ardevol A, Blade C, Salvado MJ, Arola L. Changes in lipolysis and hormone-sensitive lipase expression caused by procyanidins in 3T3-L1 adipocytes. Int J Obes Relat Metab Disord 2000; 24(3): 319-24. google scholar CR - 30. Pan R, Zhu X, Maretich P, Chen Y. Combating obesity with thermogenic fat: Current challenges and advancements. Front Endocrinol (Lausanne) 2020; 11: 185. google scholar CR - 31. Mund RA, Frishman WH. Brown adipose tissue thermogenesis: beta3-adrenoreceptors as potential targets for the treatment of obesity in humans. Cardiol Rev 2013; 21(6): 265-9. google scholar CR - 32. Ghorbani M, Himms-Hagen, J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord 1997; 21(6): 465-75. google scholar CR - 33. Clookey SL, Welly RJ, Shay D, Woodford ML, Fritsche KL, Rector RS, et al. Beta-3 adrenergic receptor activation rescues metabolic dysfunction in female estrogen receptor alpha-null mice. Front Physiol 2019; 10:9. google scholar CR - 34. Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H et al. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor gamma. J Biol Chem 2001; 276(51): 48572-9. google scholar CR - 35. Fasshauer M, Klein J, Lossner U, Klier M, Kralisch S, Paschke R. Suppression of aquaporin adipose gene expression by isoproterenol, TNFalpha, and dexamethasone. Horm Metab Res 2003; 35(4): 222-7. google scholar CR - 36. Nakazato K, Song H, Waga T. Effects of dietary apple polyphenol on adipose tissues weights in Wistar rats. Experimental Animals 2006; 55(4): 383-9. google scholar CR - 37. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, et al. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem 2007; 55(11): 4604-9. google scholar CR - 38. Joven J, Micol V, Segura-Carretero A, Alonso-Villaverde C, Menendez JA. Bioactive food components p. polyphenols and the modulation of gene expression pathways: can we the danger of chronic disease? Crit Rev Food Sci Nutr 2014; 54(8): 985-1001. google scholar UR - https://doi.org/10.26650/experimed.1479944 L1 - https://dergipark.org.tr/en/download/article-file/3912133 ER -