TY - JOUR T1 - Analyzing a Mathematical Model of the COVID-19 Pandemic with the Impact Symptomatic and Asymptomatic Transmissions TT - Semptomatik ve Asemptomatik Bulaşmaların Etkisi ile COVID-19 Salgınının Matematiksel Modelinin Analizi AU - Ak Gümüş, Özlem PY - 2024 DA - December Y2 - 2024 DO - 10.47112/neufmbd.2024.64 JF - Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi JO - NEU Fen Muh Bil Der PB - Necmettin Erbakan University WT - DergiPark SN - 2667-7989 SP - 543 EP - 556 VL - 6 IS - 3 LA - en AB - This study addresses the stability and flip bifurcation of a discrete-time SIR model expressing the COVID-19 pandemic. The model considers the effect of the vaccine, asymptomatic individuals, as well as symptomatic individuals in the transmission of the disease. Equilibrium solutions are obtained under certain parametric conditions. Then, the local stabilities of these equilibrium solutions are investigated. The existence of bifurcation is determined for the positive interior equilibrium solution. KW - COVID-19 Pandemic Model KW - Flip Bifurcation KW - Local Asymptotic Stability KW - SIR Model N2 - Bu çalışma, COVID-19 salgın sürecini ifade eden ayrık zamanlı bir SIR modelinin kararlılığını ve flip çatallanmasını ele almaktadır. Aşının etkisini dikkate alan model, hastalığın bulaşmasında semptomatik bireylerin yanı sıra asemptomatik bireylerin de etkisini içerir. Denge çözümleri belirli parametrik koşullar altında elde edilir. Daha sonra bu denge çözümlerinin lokal kararlılıkları araştırılır. Pozitif iç denge çözümü için çatallanmanın varlığı belirlenir. CR - W. H. Hamer, Epidemic disease in England-the evidence of variability and of persistence of type, Lancet. 1 (1906), 733-739. doi:10.1016/S0140-6736(01)80187-2 CR - W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London Series A. 115 (1927), 700-721. doi:10.1098/rspa.1927.0118 CR - W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Part II, The problem of endemicity, Proceedings of the Royal Society of London Series A. 138 (1932), 55-83. doi:10.1098/rspa.1932.0171 CR - W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, Part III, Further studies of the problem of Endemicity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 141(1933), 94-122. doi:10.1098/rspa.1933.0106 CR - D. Wu, T. Wu, Q. Liu, Z. Yang, The SARS-CoV-2 outbreak: What we know, International Journal of Infectious Diseases. 94 (2020), 44–48. doi:10.1016/j.ijid.2020.03.004 CR - B. Hu, H. Guo, P. Zhou, Z.L. Shi, Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology. 19 (2020), 141–145. doi:10.1038/s41579-020-00459-7 CR - H. Nishiura et al., Estimation of the asymptomatic ratio of novel coronavirus infections (covid-19), International Journal of Infectious Diseases. 94(2020), 154-155. doi:10.1016/j.ijid.2020.03.020 CR - S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea. JAMA International Medicine. 180 (11) (2020), 1447-1452. doi:10.1001/jamainternmed.2020.3862 CR - F. Bahadır, F.S. Balık., H.S. Yalçınkaya, The Impact of COVID-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. doi:10.47112/neufmbd.2023.17 CR - M. Akat, K. Karatas, Psychological effects of COVID-19 pandemic on society and its reflections on education, Turkish Studies. 15(4) (2020) 1-13. https://dx.doi.org/10.7827/TurkishStudies.44336 CR - J. Lamwong, N. Wongvanich, I.M. Tang, P. Pongsumpun, Optimal control strategy of a mathematical model for the fifth wave of COVID-19 outbreak (Omicron) in Thailand, Mathematics. 12(1) (2024), 14. doi:10.3390/math12010014 CR - O.A. Gumus, A.G.M Selvam, R. Janagaraj, Dynamics of the mathematical model related to COVID-19 pandemic with treatment, Thai Journal of Mathematics. 20 (2022), 957–970. CR - G.A. Muñoz-Fernández, J.M. Seoane, J.B. Seoane-Sepúlveda, A SIR-type model describing the successive waves of COVID-19, Chaos, Solitons & Fractals. 144 (2021), 110682. doi:10.1016/j.chaos.2021.110682 CR - A. Olivares, E. Staffetti, Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy, Chaos, Solitons & Fractals. 146 (2021), 110895. doi:10.1016/j.chaos.2021.110895 CR - K. Özdemir, Ö. Güngör, SWAT model on Filyos creek basin, Necmettin Erbakan University Journal of Science and Engineering. 1(2) (2019), 90-102. CR - Y. Asar, Performance of A new bias corrected estimator in beta regression model: A Monte Carlo study, Necmettin Erbakan University Journal of Science and Engineering. 5 (2)(2023), 75-87. doi:10.47112/neufmbd.2023.11 CR - B. Gökçe, O. B. Özden, Determination of distortions by finite element analysis using the Goldak model in a welded joint structure, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 53-64. doi:10.47112/neufmbd.2023.9 CR - E. Madenci, Contribution of micro-mechanical models to static analysis of functionally graded material plates, Necmettin Erbakan University Journal of Science and Engineering. 5(1) (2023) 23 - 37. CR - Y.C. Chen, P.E. Lu, C.S. Chang, T.H. Liu, A time-dependent SIR model for COVID19 with undetectable infected persons, IEEE Transactions on Network Science and Engineering. 7(4) (2020), 3279-3294. doi:10.1109/TNSE.2020.3024723 CR - X. Li, W. Wang, A discrete epidemic model with stage structure, Chaos, Solitons & Fractals. 26 (2005), 947–958. doi:10.1016/j.chaos.2005.01.063 CR - Z. Hu, Z. Teng, L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model. Mathematics and Computers in Simulation. 97(2014), 80-93. doi:10.1016/j.matcom.2013.08.008 CR - Z. Eskandari, J. Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, Journal of the Franklin Institute. 357(2020), 10937–10959. doi:10.1016/j.jfranklin.2020.08.040 CR - Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 112, Springer, New-York, 2013. doi:10.1007/978-1-4757-3978-7 CR - S. Kapçak, Discrete dynamical systems with SageMath, The Electronic Journal of Mathematics & Technology. 12(2) (2018), 292-308. UR - https://doi.org/10.47112/neufmbd.2024.64 L1 - https://dergipark.org.tr/en/download/article-file/3918948 ER -