TY - JOUR T1 - Estimating Daily Streamflow Values Using Artificial Neural Networks, Support Vector Regression and Multiple Linear Regression Models for Ceyhan River Basin TT - Ceyhan Nehir Havzası için Yapay Sinir Ağları, Destek Vektör Regresyonu ve Çoklu Doğrusal Regresyon Modelleri Kullanılarak Günlük Akış Değerlerinin Tahmini AU - İrvem, Ahmet AU - Özbuldu, Mustafa PY - 2024 DA - December Y2 - 2024 JF - Çukurova Tarım ve Gıda Bilimleri Dergisi JO - Çukurova J. Agric. Food. Sciences PB - Cukurova University WT - DergiPark SN - 2636-7874 SP - 401 EP - 416 VL - 39 IS - 2 LA - en AB - Streamflow data are very important for effective planning and management of water resources in basins. In this study, Artificial Neural Networks (ANN), Support Vector Regression (SVR) and Multiple Linear Regression (MLR) models were developed to estimate the daily streamflow of three different rivers in the Ceyhan River Basin. Daily precipitation and temperature data obtained from The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) re-analysis data were used as predictor variables in the models. The estimation performances of the models were evaluated with different statistical performance measures. According to the evaluation results, the SVR model demonstrated the best performance in daily streamflow estimation for the Ceyhan River, achieving R² = 0.95 and RMSE = 28.20 m³ s-1. Additionally, for Söğütlü Creek, the results were R² = 0.82 and RMSE = 6.57 m³ s-1, while for Keşiş Creek, R² = 0.93 and RMSE = 1.45 m³ s-1 were obtained. The findings indicate that the SVR model predicts daily streamflow more successfully than the other models. Furthermore, it was found that the performance of the models developed using machine learning algorithms was superior to that of the linear regression model. KW - Artificial neural networks KW - support vector regression KW - MATLAB KW - streamflow estimation KW - MERRA-2 N2 - Akış verileri, havzalardaki su kaynaklarının etkin planlanması ve yönetilebilmesi için oldukça önemlidir. Bu çalışmada, Ceyhan Nehri Havzasında bulunan üç farklı akarsuyun günlük akışını tahmin etmek için Yapay Sinir Ağları, Destek Vektör Regresyonu ve Çoklu Doğrusal Regresyon modelleri oluşturulmuştur. Modellerde tahmin edici değişkenler olarak MERRA-2 re-analiz veri setinden elde edilen günlük yağış ve sıcaklık verileri kullanılmıştır. Modellerin tahmin performansları farklı istatistiksel performans ölçütleri ile değerlendirilmiştir. Değerlendirme sonuçlarına göre SVR modelinin günlük akarsu akışını diğer modellere göre daha başarılı bir şekilde tahmin ettiği belirlenmiştir. Ayrıca makine öğrenmesi algoritmaları kullanılarak oluşturulan modellerin performansının doğrusal regresyon modeline göre daha üstün olduğu tespit edilmiştir. CR - Adamowski, J., Sun, K. (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1–2):85–91. CR - Aqil, M., Kita, I., Yano, A., Nishiyama, S. (2007) Neural networks for real time catchment flow modeling and prediction. Water Resour Manage 21:1781–1796. CR - Badrzadeh, H., Sarukkalige, R., Jayawardena, A.W. (2013) Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting. J Hydrol 507:75–85. CR - Bafitlhile, T. M., Li, Z. (2019) Applicability of ε-support vector machine and artificial neural network for flood forecasting in humid, semi-humid and semi-arid basins in China. Water 1(11):85. CR - Belayneh, A., Adamowski, J., Khalil, B. (2015) Short-term SPI drought forecasting ın the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain Water Resour Manage 1(2):87-101. CR - Bhadrecha, M. H., Khatri, N., Tyagi, S. (2016) Rapid integrated water quality evaluation of Mahisagar river using benthic macroinvertebrates. Environ Monit Assess 188:254. CR - Chau, K. W., and Li, Y. (2009) Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour Res 8(45). CR - Cheng, C. T., Feng, Z. K., Niu, W. J., Liao, S. L. (2015) Heuristic methods for reservoir monthly inflow forecasting: a case study of Xinfengjiang Reservoir in Pearl River, China. Water 7:4477–4495. CR - Corine (2020) Land use and land cover map. https://land.copernicus.eu/en/products/corine-land-cover Accessed 18 December 2022. CR - Corzo, G., Solomatine, D. (2007) Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrological Sciences Journal 52:491–507. CR - Dawson, C. W., Wilby, R. L. (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr Earth Environ 25(1):80–108. CR - DSI (2022) Daily streamflow data. https://www.dsi.gov.tr/ . Accessed 13 December 2022. CR - Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K., Ardabili, S. F., Piran, M. J. (2018) Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Eng Appl Comput Fluid Mech 12(1):411–437. CR - Guimaraes Santos, C. A., Silva, G. B. L. D. (2014) Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59(2):312–324. UR - https://dergipark.org.tr/en/pub/cutarim/issue//1483566 L1 - https://dergipark.org.tr/en/download/article-file/3928141 ER -