TY - JOUR T1 - Additivity of multiplicative generalized Jordan maps on triangular rings AU - Prakash, Om AU - Aziz, Sk AU - Ghosh, Arindam PY - 2025 DA - January Y2 - 2024 DO - 10.24330/ieja.1488471 JF - International Electronic Journal of Algebra JO - IEJA PB - Abdullah HARMANCI WT - DergiPark SN - 1306-6048 SP - 91 EP - 111 VL - 37 IS - 37 LA - en AB - This paper presents three different conditions for the additivity of a map on a triangular ring $\mathcal{T}$. First, we prove a map $\delta$ on $\mathcal{T}$ satisfying $delta(a_1b_1+b_1a_1)=\delta(a_1)b_1 +a_1 \tau(b_1)+\delta(b_1)a_1 + b_1\tau(a_1)$ for all $a_1,b_1\in \mathcal{T}$ and for some maps $\tau$ over $\mathcal{T}$ satisfying $\tau(a_1b_1+b_1a_1)=\tau(a_1)b_1+a_1 \tau(b_1)+\tau(b_1)a_1+b_1\tau(a_1)$, is additive. Secondly, it is shown that a map $T$ on $\mathcal{T}$ satisfying $T(a_1b_1)=T(a_1)b_1=a_1T(b_1)$ for all $a_1,b_1\in \mathcal{T}$ is additive. Finally, we show that if a map $D$ over $\mathcal{T}$ satisfies $(m+n)D(a_1b_1)=2mD(a_1)b_1+2na_1D(b_1)$ for all $a_1,b_1\in \mathcal{T}$ and integers $m,n\geq 1$, then $D$ is additive. KW - Additivity KW - Jordan derivation KW - two-sided centralizer KW - $(m KW - n)$-derivation KW - triangular ring CR - S. Ali and A. Fosner, On generalized (m, n)-derivations and generalized (m, n)-Jordan derivations in rings, Algebra Colloq., 21(3) (2014), 411-420. CR - S. Aziz, A. Ghosh and O. Prakash, Additivity of multiplicative (generalized) skew semi-derivations on rings, Georgian Math. J., (2023), doi.org/10.1515/gmj-2023-2100. CR - M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci., 14(3) (1991), 615-618. CR - M. S. T. El-Sayiad, M. N. Daif and V. D. Filippis, Multiplicativity of left centralizers forcing additivity, Bol. Soc. Parana. Mat. (3), 32(1) (2014), 61-69. CR - B. L. M. Ferreira, Multiplicative maps on triangular n-matrix rings, Int. J. Math. Game Theory Algebr., {23}(2) (2014), 1-14. CR - B. L. M. Ferreira, Jordan derivations on triangular matrix rings, Extracta Math., 30(2) (2015), 181-190. CR - A. Ghosh and O. Prakash, New results on generalized (m,n)-Jordan derivations over semiprime rings, {Southeast Asian Bull. Math.,} 43(3) (2019), 323-331. CR - A. Ghosh and O. Prakash, Characterization of Jordan {$g,h$}-derivations over matrix algebras, J. Algebr. Syst., 11(1) (2023), 77-95. CR - I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110. CR - W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math., 7(4) (2003), 605-613. CR - W. S. Martindale, III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21(3) (1969), 695-698. CR - C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc., 54 (1948), 758-764. CR - Y. Wang, The additivity of multiplicative maps on rings, Comm. Algebra, 37(7) (2009), 2351-2356. CR - Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl., 434(3) (2011), 625-635. CR - J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261. UR - https://doi.org/10.24330/ieja.1488471 L1 - https://dergipark.org.tr/en/download/article-file/3949287 ER -