TY - JOUR T1 - 3B YAZICILAR İÇİN SÜREKLİ TAKVİYELİ FİLAMENT ÜRETİMİNE UYGUN KALIP TASARIMI TT - SUITABLE MOLD DESIGN FOR CONTINUOUS REINFORCED FILAMENT PRODUCTION FOR 3D PRINTERS AU - Öz, Özkan AU - Taleb, Mohamad Diaa AU - Öztürk, Fatih Huzeyfe PY - 2024 DA - August Y2 - 2024 DO - 10.46519/ij3dptdi.1490399 JF - International Journal of 3D Printing Technologies and Digital Industry JO - IJ3DPTDI PB - Kerim ÇETİNKAYA WT - DergiPark SN - 2602-3350 SP - 277 EP - 286 VL - 8 IS - 2 LA - tr AB - Üç boyutlu (3B) yazdırma teknolojisi sahip olduğu esnek imalat kabiliyetlerinden dolayı, günümüzde farklı endüstri alanlarında alternatif imalat metodu olarak kullanılmaktadır. Bu yöntemde, geleneksel imalat yöntemlerinden farklı olarak, parçalar katmanlar halinde üretilmektedir. Geleneksel imalat yöntemleri ile üretimi oldukça zor olan karmaşık geometrilere sahip parçalar 3B yazıcılar ile üretilebilmektedir. Bu imalat yönteminde karşılaşılan en büyük dezavantaj son ürün mekanik özelliklerinin polimer kalıplama yöntemleri ile karşılaştırıldığında düşük olmasıdır. Ancak, sürekli veya süreksiz fiber takviyeli filamentlerin geliştirilmesi ile son ürün mekanik özelliklerinin belirgin oranda iyileştirilmesi mümkün olmaktadır. Bu çalışmada, sürekli takviye elemanı ile güçlendirilmiş termoplastik matrisli filament üretiminde kullanılabilecek kalıp tasarımı ve üretimi amaçlanmıştır. Takviye ve matris elemanları olarak sırasıyla, tel ve Polilaktik Asit (PLA) tercih edilmiştir. Çalışmanın deneysel kısmında, tel takviyeli kompozit filament kullanılarak yazdırılan çekme test numunelerinin dayanımları ile saf PLA filament kullanılarak yazdırılan numune dayanımları karşılaştırılmıştır. Deneysel sonuçlar, yazdırmanın kompozit filament ile yapılması durumunda parça dayanımının belirgin şekilde iyileştirilebileceğini göstermiştir. KW - 3B yazdırma KW - Sürekli Metal Takviyeli Filament KW - Kompozit malzemeler KW - Mekanik Özellikler N2 - Three-dimensional (3D) printing technology is now being used as an alternative manufacturing method in various industries due to its flexible manufacturing capabilities. Unlike traditional manufacturing methods, 3D printing builds parts in layers. Parts with complex geometry that are difficult to produce with traditional manufacturing methods can be produced with 3D printers. The main disadvantage of this manufacturing method is that the mechanical properties of the final product are low compared to polymer molding techniques. However, by developing continuous or discontinuous fiber reinforced filaments, it is possible to significantly improve the mechanical properties of the final product. The objective of this study is to design and fabricate mold that can be used to produce thermoplastic matrix filament reinforced with continuous reinforcing elements. Wire and polylactic acid (PLA) were preferred as reinforcement and matrix elements, respectively. In the experimental part of the study, the strength of tensile test specimens printed with wire-reinforced composite filament was compared with the strength of specimens printed with pure PLA filament. The experimental results showed that part strength can be significantly improved when printing with composite filament. CR - 1. Anaç, N., Koçar, O., and Altuok, C., “Investigation of The Weldability of PLA Plus Sheets with Different Infill Ratios by Friction Stir Welding”, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, Vol. 12, No. 1, Pages. 282–296 (2024). CR - 2. Temiz, A., “The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures”, J Braz. Soc. Mech. Sci. Eng., Vol. 46, No. 2, Pages. 121, 2024. CR - 3. Öz, Ö. and Öztürk, F. H., “Yazdırma Açısının 3B Yazıcıda Üretilen PLA Numunenin Mekanik Özellikleri Üzerine Etkisinin Deneysel ve Sonlu Elemanlar Metodu ile İncelenmesi”, Politeknik Dergisi, Cilt. 26, Sayı. 2, Sayfa. 529–540, 2023. CR - 4. Rouf, S., Malik, A., Singh, N., Raina, A., Naveed, N., Siddiqui, M. I. H., and Haq, M. I. U., “Additive manufacturing technologies: Industrial and medical applications”, Sustainable Operations and Computers, Vol. 3, Pages. 258–274, 2022. CR - 5. Zhuo, P., Li, S., Ashcroft, I. A., and Jones, A. I., “Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook”, Composites Part B: Engineering, Vol. 224, Pages. 109143, 2021. CR - 6. Öz, Ö., Öztürk, F. H., and Güleç, C., “Effect of fiber content and plasticizer on mechanical and joint properties of carbon fiber powder reinforced PLA manufactured by 3D printing process”, Journal of Adhesion Science and Technology, Vol. 37, No. 15, Pages. 2208–2231, 2023. CR - 7. Sezer, H., Eren, O., Börklü, H., and Özdemi̇r, V., “Karbon fiber takviyeli polimer kompozitlerin ergiyik biriktirme yöntemi ile eklemeli imalatı: fiber oranı ve yazdırma parametrelerinin mekanik özelliklere etkisi”, Journal Of The Faculty Of Engıneerıng And Archıtecture of Gazı Unıversıty, Cilt. 34, Sayı. 2, 2019. CR - 8. Parmaksız, F., Anaç, N., Koçar, O., and Erdogan, B., “Investigation of mechanical properties and thermal conductivity coefficients of 3D printer materials”, Int. Adv. Res. Eng. J., Vol. 7, No. 3, Pages. 146–156 (2023). CR - 9. Mortazavian, S. and Fatemi, A., “Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review”, International Journal of Fatigue, Vol. 70, Pages. 297–321, 2015. CR - 10. Heidari-Rarani, M., Rafiee-Afarani, M., and Zahedi, A. M., “Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites”, Composites Part B: Engineering, Vol. 175, Pages. 107147, 2019. CR - 11. Rajak, D. K., Wagh, P. H., and Linul, E., “Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review”, Polymers, Vol. 13, No. 21, Pages. 3721, 2021. CR - 12. He, X., Ding, Y., Lei, Z., Welch, S., Zhang, W., Dunn, M., and Yu, K., “3D printing of continuous fiber-reinforced thermoset composites”, Additive Manufacturing, Vol. 40, Pages. 101921, 2021. CR - 13. Pappas, J. M., Thakur, A. R., Leu, M. C., and Dong, X., “A parametric study and characterization of additively manufactured continuous carbon fiber reinforced composites for high-speed 3D printing”, Int J Adv Manuf Technol, Vol. 113, No. 7, Pages. 2137–2151, 2021. CR - 14. Qiao, J., Li, Y., and Li, L., “Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) composites”, Additive Manufacturing, Vol. 30, Pages. 100926, 2019. CR - 15. Zhang, Z., Long, Y., Yang, Z., Fu, K., and Li, Y., “An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites”, Composites Part A: Applied Science and Manufacturing, Vol. 162, Pages. 107162, 2022. CR - 16. Mosleh, N., Rezadoust, A. M., and Dariushi, S., “Determining process-window for manufacturing of continuous carbon fiber-reinforced composite Using 3D-printing”, Materials and Manufacturing Processes, Vol. 36, No. 4, Pages. 409–418, 2021. CR - 17. Blok, L. G., Longana, M. L., Yu, H., and Woods, B. K. S., “An investigation into 3D printing of fibre reinforced thermoplastic composites”, Additive Manufacturing, Vol. 22, Pages. 176–186, 2018. CR - 18. Luminy® “Product Data Sheet L175”, https://www.totalenergies-corbion.com/media/eushodia/pds-luminy-l175-190507.pdf, April 20, 2024. CR - 19. Ibrahim, Y., Melenka, G. W., and Kempers, R., “Fabrication and tensile testing of 3D printed continuous wire polymer composites”, Rapid Prototyping Journal, Vol. 24, No. 7, Pages. 1131–1141, 2018. UR - https://doi.org/10.46519/ij3dptdi.1490399 L1 - https://dergipark.org.tr/en/download/article-file/3958003 ER -