TY - JOUR T1 - A Finite Element Approach for Phase-Change Analysis of Paraffin TT - Parafin Faz-Değiştirme Analizlerinde Sonlu Elemanlar Yaklaşımı AU - Ozcatalbas, Mustafa AU - Sözen, Adnan PY - 2024 DA - October Y2 - 2024 DO - 10.2339/politeknik.1492300 JF - Politeknik Dergisi PB - Gazi University WT - DergiPark SN - 2147-9429 SP - 1837 EP - 1842 VL - 27 IS - 5 LA - en AB - During the design of thermal management systems involving PCMs, analysis tools are essential for determining the amount of PCM required, optimal instalment locations, and the heating-cooling transient behavior of the systems. Computational Fluid Dynamics (CFD) solvers are often employed for these tasks, as they can account for both conduction and advection effects during PCM phase transitions. However, CFD simulations can be computationally expensive, particularly when solving transient behaviour. An alternative approach for PCM simulations is the Finite Element Method (FEM), which offers computationally inexpensive heat transfer analyses while providing good accuracy for thermal energy storage design, including phase transitions. This study has focused on thermal analysis of paraffin wax performed by FEM. KW - Phase Change Materials (PCM) KW - Finite Element Analysis KW - Thermal Analysis KW - Differential Scanning Calorimetry (DSC) N2 - Faz değiştiren malzemelerin (FDM'ler) kullanıldığı termal sistemlerinin tasarımı sırasında, analiz araçlarının kullanımı önem arz eder. Nümerik analizler, FDM miktarının belirlenmesi, optimal montaj konumları ve sistemlerin ısınma-soğuma sürelerinin belirlenmesi için esastır. Bu amaç doğrultusunda genellikle Hesaplamalı Akışkanlar Dinamiği (HAD) çözücüleri kullanılır. Ancak, HAD simülasyonları, özellikle zamana bağlı çözümlerde oldukça hesaplama maliyeti getirir. FDM simülasyonları için bir alternatif yaklaşım olarak Sonlu Elemanlar Yöntemi (SEY) tercih edilebilir. Bu çalışma, FEM tarafından gerçekleştirilen parafin mumunun termal analizine odaklanmıştır. CR - [1] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews, 13(2), 318–345, (2009). CR - [2] K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, “A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges”, Applied Energy, 220, 242–273, (2018). CR - [3] M. Aravindhan and R. Ayyasamy, “Experimental investigation on phase change material”, International Journal of Emerging Technologies in Engineering Research, 4(6), (2016). CR - [4] H. Mehling and L. F. Cabeza, “Heat and Cold Storage With PCM: An Up To Date Introduction Into Basics And Application”, Springer, (2008). CR - [5] Z. Chen, D. Gao, and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale”, Int. Jo. of Heat and Mass Transfer, 72, 646–655, (2014). CR - [6] C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)”, Solar Energy, 84(8), 1402–1412, (2010). CR - [7] X. Xiao, P. Zhang, and M. Li, “Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage”, Int. Jo. of Thermal Sciences, 81(1), 94–105, (2014). CR - [8] X. Xiao, P. Zhang, and M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material”, Applied Energy, 112, 1357–1366, (2013). CR - [9] G. K. Marri and C. Balaji, “Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink”, Int. Jo. of Heat Mass Transfer, 164, (2021). CR - [10] M. Li, “A nano-graphite/paraffin phase change material with high thermal conductivity”, Applied Energy, 106, 25–30, (2013). CR - [11] U. N. Temel, S. Kurtulus, M. Parlak, and K. Yapici, “Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials”, Journal of Thermal Analysis and Calorimetry, 132(1), 631–641, (2018). CR - [12] F. Zhu, C. Zhang, and X. Gong, “Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity”, Applied Thermal Engineering, 123, 256–265, (2017). CR - [13] W. B. Ye, D. S. Zhu, and N. Wang, “Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions”, Applied Thermal Engineering, 42, 49–57, (2012). CR - [14] Y. T. Yang and Y. H. Wang, “Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material”, Int. Jo. of Thermal Sciences, 51(1), 155–162, (2012). CR - [15] A. Bhattacharya, V. V Calmidi, and R. L. Mahajan, “Thermophysical properties of high porosity metal foams”, Int. Jo. of. Heat Mass Transfer, 45, 1017–1031, (2002). CR - [16] M. Bai and J. N. Chung, “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams”, Int. Jo. of Thermal Sciences, 50(6), 869–880, (2011). CR - [17] K. K. Bodla, J. Y. Murthy, and S. V. Garimella, “Resistance network-based thermal conductivity model for metal foams”, Computational Materials Science, 50(2), 622–632, (2010). CR - [18] E. N. Schmierer and A. Razani, “Self-consistent open-celled metal foam model for thermal applications”, Jo. of Heat Transfer, 128(11), 1194–1203, (2006). CR - [19] R. Singh and H. S. Kasana, “Computational aspects of effective thermal conductivity of highly porous metal foams”, Applied Thermal Engineering, 24(13), 1841–1849, (2004). CR - [20] Z.-X. Gong and A. S. Mujumdar, “Finite-Element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger”, Applied Thermal Engineering, 17(6), 583–591, (1997). CR - [21] H. Zhou, Å. Fransson, and T. Olofsson, “An explicit finite element method for thermal simulations of buildings with phase change materials”, Energies, 14(19), (2021). CR - [22] David V. Hutton, “Fundamentals of Finite Element Analysis”, McGraw Hill, (2004). UR - https://doi.org/10.2339/politeknik.1492300 L1 - https://dergipark.org.tr/en/download/article-file/3966422 ER -