TY - JOUR T1 - EFFECT OF S-ADENOSYLMETHIONINE ON HEPATIC AND METABOLIC DISORDERS IN GUINEA PIGS WITH NONALCOHOLIC STEATOHEPATITIS TT - NON-ALKOLİK STEATOHEPATİT OLUŞTURULAN KOBAYLARDA S-ADENOZİLMETIYONİNİN KARACİĞER VE METABOLİK BOZUKLUKLAR ÜZERİNE ETKİSİ AU - Bingül, İlknur AU - Küçükgergin, Canan AU - Aydın, Abdurrahman Fatih AU - Çevik, Aydın AU - Soluk Tekkeşin, Merva AU - Olgaç, Vakur AU - Doğru Abbasoğlu, Semra AU - Uysal, Müjdat PY - 2025 DA - January Y2 - 2024 DO - 10.26650/IUITFD.1498606 JF - Journal of Istanbul Faculty of Medicine JO - İst Tıp Fak Derg PB - Istanbul University WT - DergiPark SN - 1305-6441 SP - 60 EP - 71 VL - 88 IS - 1 LA - en AB - Objective: S-adenosylmethionine (SAM) has antioxidant and anti-inflammatory actions and hepatoprotective potential. In this study, the therapeutic effectiveness of SAM was investigated in high-fat/cholesterol diet (HFCD)-induced non-alcoholic steatohepatitis (NASH).Material and Methods: In this study, guinea pigs were fed a HFCD for ten weeks to induce NASH. SAM (50 mg/kg, i.p.) was administered to the animals during the last four weeks of the 10-week HFCD regimen. Hepatic damage markers, lipid levels (total cholesterol and triglyceride), inflammatory cytokines (tu mour necrosis-α and interleukin-6) levels, and insulin resistance (HOMA-IR) were determined in the serum. Moreover, hepatic lip ids, SAM and cytochrome p450-2E1 (CYP2E1) levels, prooxidant parameters (reactive oxygen species, lipid peroxides and protein carbonyls) and antioxidant parameters (glutathione levels and antioxidant activity) together with fibrosis indicators (α-smooth muscle actin and transforming growth factor-β1 protein expres sions and hydroxyproline levels) were investigated in the liver. Steatosis, inflammation, and fibrosis scores were also detected histopathologically. Result: SAM treatment diminished the increase in hepatic damage markers, inflammatory cytokine levels, and HOMA-IR levels in the serum of guinea pigs with HFCD-induced NASH. Elevated levels of hepatic triglyceride and CYP2E1 and fibrosis indicators were also detected to decrease due to SAM treatment. This treatment reduced the decrease in SAM levels, disturbance in the prooxidant and antioxidant balance, and diminished the increases in steatosis, inflammation, and fibrosis scores in the liver of guinea pigs fed the HFCD diet.Conclusion: These results indicate that SAM may be effective in HFCD-induced NASH as a therapeutic agent by decreasing lipogenesis, oxidative stress, inflammation, and fibrosis. KW - S-adenosylmethionine KW - nonalcoholic steatohepatitis KW - high fat/cholesterol diet KW - oxidative stress KW - inflammatory cytokines KW - guinea pigs N2 - Amaç: S-adenozilmetiyonin (SAM), antioksidan ve anti-enflamatuar etkilere ve hepatoprotektif potansiyele sahiptir. Bu çalışmada, yüksek yağ/kolesterollü diyet (YYKD) ile indüklenen non-alkolik steatohepatit (NASH) üzerinde SAM'ın terapötik etkinliği araştırılmıştır.Gereç ve Yöntem: Bu çalışmada, NASH oluşturmak için kobaylara 10 hafta boyunca YYKD verildi. Hayvanlara, 10 haftalık YYKD uygulamasının son dört haftasında SAM (50 mg/kg, i.p) uygulandı. Serumda hepatik hasar belirteçleri, lipitler (total kolesterol ve trigliserit), inflamatuar sitokin (tümör nekroz faktörü-α ve interlökin-6) düzeyleri ve insülin direnci (HOMA-IR) ölçüldü. Ayrıca, karaciğerde hepatik lipitler, SAM ve sitokrom p450-2E1 (CYP2E1) düzeyleri, prooksidan parametreler (reaktif oksijen türleri, lipid peroksidleri ve protein karbonil) ve antioksidan parametreler (glutatyon düzeyleri ve antioksidan aktivite) ile birlikte fibrotik parametreler (α-düz kas aktin ve transforme edici büyüme faktör-β1 protein ekspresyonları ve hidroksiprolin düzeyleri) belirlendi. Steatozis, inflamasyon ve fibrozis skorları da histopatolojik olarak tespit edildi.Bulgular: SAM tedavisi, YYKD ile indüklenen NASH'lı kobayların serumunda hepatik hasar belirteçleri, enflamatuar sitokinler düzeyleri ve HOMA-IR düzeylerinde azalmaya neden oldu. Ayrıca, trigliserit ve CYP2E1 düzeyleri ile fibroz belirteçlerindeki yüksek seviyelerin de SAM tedavisine bağlı olarak azaldığı tespit edildi. Bu tedavi, YYKD diyeti ile beslenen kobayların karaciğerinde SAM düzeylerindeki azalmayı, prooksidan ve antioksidan dengesindeki bozukluğu iyileştirdi, steatozis, inflamasyon ve fibrozis skorlarındaki artışları azalttı.Sonuç: Bu sonuçlar, SAM'ın lipojenez, oksidatif stres, enflamasyon ve fibrozisi azaltarak YYKD ile indüklenen NASH'ta terapotik bir ajan olarak etkili olabileceğini göstermektedir. CR - Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010;16(11):1366-76. [CrossRef] google scholar CR - Mora SI, Garcia-Roman J, Gomez-Nanez I, Garcia-Roman R. Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector. Eur J Gastroenterol Hepatol 2018;30(8):893-900. [CrossRef] google scholar CR - Brown JM, Kuhlman C, Terneus MV, Labenski MT, Lamyaithong AB, Ball JG, et al. S-adenosyl-l-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry. Toxicol Appl Pharmacol 2014;281(2):174-84. [CrossRef] google scholar CR - Valdes S, Paredes SD, Garda Carreras C, Zuluaga P, Rancan L, Linillos-Pradillo B, et al. S-Adenosylmethionine decreases bacterial translocation, proinflammatory cytokines, oxidative stress and apoptosis markers in hepatic ischemia-reperfusion injury in Wistar rats. Antioxidants 2023;12(8):1539. [CrossRef] google scholar CR - Gong Z, Yan S, Zhang P, Huang Y, Wang L. Effects of S-adenosylmethionine on liver methionine metabolism and steatosis with ethanol-induced liver injury in rats. Hepatol Int 2008;2(3):346-52. [CrossRef] google scholar CR - Brzacki V, Mladenovic B, Dimic D, Jeremic L, Zivanovic D, Djukic D, et al. Comparison between the effects of selenomethionine and S-adenosylmethionine in preventing cholestasis-induced rat liver damage. Amino Acids 2019;51(5):795-803. [CrossRef] google scholar CR - Karaa A, Thompson KJ, McKillop IH, Clemens MG, Schrum LW. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model. Shock 2008;30(2):197-805. [CrossRef] google scholar CR - Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med 2015;240(6):809-20. [CrossRef] google scholar CR - Mato JM, Alonso C, Noureddin M, Lu SC. Biomarkers and subtypes of deranged lipid metabolism in nonalcoholic fatty liver disease. World J Gastroenterol 2019;25(24):3009-20. [CrossRef] google scholar CR - Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: Current and potential therapies. Life Sci 2013;92(2):114-8. [CrossRef] google scholar CR - Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int 2017;37(suppl 1):97-103. [CrossRef] google scholar CR - Wortham M, He L, Gyamfi M, Copple BL, Wan YJY. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig Dis Sci. 2008;53(10):2761-74. [CrossRef] google scholar CR - Bekyarova G, Tzaneva M, Bratoeva K, Kotzev I, Radanova M. Heme-oxygenase-1 upregulated by S-adenosylmethionine. Potential protection against non-alcoholic fatty liver induced by high fructose diet. Farmacia 2017;65:262-7. google scholar CR - Li Z, Wang F, Liang B, Su Y, Sun S, Xia S, et al. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020;5(1):280. [CrossRef] google scholar CR - Guo T, Dai Z, You K, Battaglia-Hsu SF, Feng J, Wang F, et al. S-adenosylmethionine upregulates the angiotensin receptor-binding protein ATRAP via the methylation of HuR in NAFLD. Cell Death Dis 2021;12(4):306. [CrossRef] google scholar CR - Oz HS, Im HJ, Chen TS, de Villiers WJ, McClain CJ. Glutathione-enhancing agents protect against steatohepatitis in a dietary model. J Biochem Mol Toxicol 2006;20(1):39-7. [CrossRef] google scholar CR - Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: A review of current evidence and clinical utility. J Hepatol 2012;57(5):1097-109. [CrossRef] google scholar CR - Bingül İ, Küçükgergin C, Aydın AF, Çevik A, Soluk-Tekkeşin M, Olgaç V, et al. Protective role of S-adenosylmethionine on high fat/high cholesterol diet induced hepatic and aortic lesions and oxidative stress in guinea pigs. Gen Physiol Biophys 2024;43(5):411-21. [CrossRef] google scholar CR - Kim SY, Hong SW, Kim MO, Kim HS, Jang JE, Leem J, et al. S-adenosyl methionine prevents endothelial dysfunction by inducing heme oxygenase-1 in vascular endothelial cells. Mol Cells 2013;36(4):376-84. [CrossRef] google scholar CR - Bingül İ, Aydın AF, Başaran-Küçükgergin C, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, et. al. High-fat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats. Int. Immunopharmacol 2016;39:199-207. [CrossRef] google scholar CR - Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27(5-6):612-6. [CrossRef] google scholar CR - Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. [CrossRef] google scholar CR - Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994;233:357-63. [CrossRef] google scholar CR - Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882-8. google scholar CR - Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’’: the FRAP assay. Anal Biochem 1996;239(1):70-6. [CrossRef] google scholar CR - Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal. Biochem 1985;150:76-5. [CrossRef] google scholar CR - Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 2007;47(4):598-607. [CrossRef] google scholar CR - Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012;18(19):2300-8. [CrossRef] google scholar CR - Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, et al. Syneristic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 2013;57(1):81-2. [CrossRef] google scholar CR - Fukada A, Sasao M, Asakawa E, Narita S, Hisano M, Suruga K, et al. Dietary fat, cholesterol, and cholic acid affect the histopathologic severity of nonalcoholic steatohepatitis in Sprague-Dawley rats. Pathol Res Pract 2019;215(11):152599. [CrossRef] google scholar CR - Ipsen DH, Tveden-Nyborg P, Rolin B, Rakipovski G, Beck M, Mortensen LW, et al. High-fat but not sucrose intake is essential for induction of dyslipidemia and non-alcoholic steatohepatitis in guinea pigs. Nutr Metab 2016;13:51. [CrossRef] google scholar CR - DeOgburn R, Murillo AG, Fernandez ML. Guinea pigs as models for investigating non-alcoholic fatty liver disease. Integr Food Nutr Metab 2016;3:309-13. [CrossRef] google scholar CR - Ye P, Cheah IK, Halliwell B. High fat diets and pathology in the guinea pigs. Atherosclerosis or liver damage? Biochim Biophys Acta 2013;1832(2):355-64. [CrossRef] google scholar CR - Harjumaki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipd overload. Int J Mol Sci 2021;22(15):8221. [CrossRef] google scholar CR - Okada Y, Yamaguchi K, Nakajima T, Nishikawa T, Jo M, Mitsumoto Y, et al. Rosuvastatin ameliorates high-fat and high-cholesterol diet-induced nonalcoholic steatohepatitis in rats. Liver Int 2013;33(2):301-11. [CrossRef] google scholar CR - Ore A, Akinloye OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019;55(2):26. [CrossRef] google scholar CR - Cheng F, Yang Y, Yun S, Cao J, Chang M, Cheng Y, et al. Sparassis latifolia polysaccharide attenuates cholesterol in rats maintained on a high -fat, high-cholesterol diet. J Food Biochem 2023;2023:7473668. [CrossRef] google scholar CR - Ramani K, Lu SC. Methionine adenosyltransferases in liver health and diseases. Liver Res 2017;1(2):103-7. [CrossRef] google scholar CR - Vergani L, Baldini F, Khalil M, Voci A, Putignano P, Miraglia N. New perspectives of S-adenosylmethionine (SAMe) applications to attenuate fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Molecules 2020;25(18):4237. [CrossRef] google scholar CR - Wu Y, Ma KL, Zhang Y, Wen Y, Wang GH, Hu ZB, et al. Lipid disorder and intrahepatic-renin-angiotensin system activation synergically contribute to non-alcoholic fatty liver disease. Liver Int 2016;36(10):1525-34. [CrossRef] google scholar CR - Lieber CS, Leo MA, Cao Q, Mak KM, Ren C, Ponomarenko A, et al. The combination of S-adenosylmethionine and dilinoleoylphosphatidylcholine attenuates non-alcoholic steatohepatitis produced in rats by a high-fat diet. Nutr Res 2007;27(9):565-73. [CrossRef] google scholar UR - https://doi.org/10.26650/IUITFD.1498606 L1 - https://dergipark.org.tr/en/download/article-file/3994305 ER -