TY - JOUR T1 - A Study on the Importance of Factors Effecting the Occupational Safety Performance AU - Haktanır Aktaş, Elif AU - Gümüştaş, Cihangir AU - Temur, Gül Tekin AU - Beşkese, Ahmet PY - 2025 DA - December Y2 - 2025 DO - 10.35378/gujs.1501298 JF - Gazi University Journal of Science PB - Gazi University WT - DergiPark SN - 2147-1762 SP - 1968 EP - 1998 VL - 38 IS - 4 LA - en AB - In contemporary workplaces, organizational safety is not just a regulatory obligation but a critical determinant of sustainable success. With the evolving technological advancements in industries, understanding the factors that influence occupational safety becomes paramount. This study examines the multifaceted structure of occupational safety criteria, recognizing its importance in ensuring not only the physical well-being of workers but also the organizational resilience. Utilizing the Interval-Valued Picture Fuzzy Analytic Hierarchy Process (IVPF-AHP) method, this research aims to prioritize the most crucial factors influencing safety performance. Through a comprehensive analysis of 20 sub-criteria under five main categories — Organization, Safety Climate, Regulatory Characteristics, Workplace Environment, and Individual Characteristics — the study reveals insights into the nuanced interplay of organizational, managerial, and individual factors that shape safety outcomes. The findings underscore the prominence of factors such as Workload Pressure, Management and Supervisor Commitment to Safety, Sanctions and Auditing, Number of Subcontractors, and Equipment Conditions in enhancing safety performance. KW - Interval-valued picture fuzzy sets KW - AHP KW - Occupational safety performance CR - [1] Gao, Y., González, V.A. and Yiu, T.W., “Exploring the Relationship between Construction Workers’ Personality Traits and Safety Behavior”, J. Constr. Eng. Manag, 146: 04019111, (2020). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001763 CR - [2] Lee, W., Migliaccio, G.C., Lin, K.-Y. and Seto, E.Y.W., “Workforce development: understanding task-level job demands-resources, burnout, and performance in unskilled construction workers”, Saf. Sci, 123: 104577, (2020). DOI: https://doi.org/10.1016/j.ssci.2019.104577 CR - [3] Karuppiah, K., Sankaranarayanan, B. and Ali, S.M., “A fuzzy ANP–DEMATEL model on faulty behavior risks: implications for improving safety in the workplace”, Int. J. Occup. Saf. Ergon, 28: 923–940, (2022). DOI: https://doi.org/10.1080/10803548.2020.1847486 CR - [4] Altunkaynak, B., “A statistical study of occupational accidents in the manufacturing industry in Turkey”, Int. J. Ind. Ergon, 66: 101–109, (2018). DOI: https://doi.org/10.1016/j.ergon.2018.02.012 CR - [5] European Agency for Safety and Health at Work, “Occupational safety and health in Europe - state and trends 2023”, (2023). COI: 20.500.12592/qhkb73 CR - [6] Mutlu, N.G. and Altuntas, S., “Analyzing factors influencing the severity of occupational accidents in textile industry using decision tree algorithms”, Clust. Comput, 27: 787–825, (2024). DOI: https://doi.org/10.1007/s10586-022-03958-9 CR - [7] T.C. Çalışma Ve Sosyal Güvenlik Bakanlığı Rehberlik ve Teftiş Başkanlığı, Y.Y., “2022 Yılı Yapı İşyerlerinde İş sağlığı ve Güvenliği Programlı Teftişi”, (2022). CR - [8] Fernández-Muñiz, B., Montes-Peón, J.M. and Vázquez-Ordás, C.J., “Safety leadership, risk management and safety performance in Spanish firms”, Saf. Sci, 70: 295–307, (2014). https://doi.org/10.1016/j.ssci.2014.07.010 CR - [9] Hanvold, T.N., Kines, P., Nykänen, M., Thomée, S., Holte, K.A., Vuori, J., Wærsted, M. and Veiersted, K.B., “Occupational Safety and Health Among Young Workers in the Nordic Countries: A Systematic Literature Review”, Saf. Health Work, 10: 3–20, (2019). DOI: https://doi.org/10.1016/j.shaw.2018.12.003 CR - [10] Chan, A.P.C. and Chan, A.P.L., “Key performance indicators for measuring construction success”, Benchmarking Int. J, 11: 203–221, (2004). DOI: https://doi.org/10.1108/14635770410532624 CR - [11] Eskandari, D., Gharabagh, M.J., Barkhordari, A., Gharari, N., Panahi, D., Gholami, A. and Teimori-Boghsani, G., “Development of a scale for assessing the organization’s safety performance based fuzzy ANP”, J. Loss Prev. Process Ind, 69: 104342, (2021). DOI: https://doi.org/10.1016/j.jlp.2020.104342 CR - [12] Sheehan, C., Donohue, R., Shea, T., Cooper, B. and Cieri, H.D., “Leading and lagging indicators of occupational health and safety: The moderating role of safety leadership”, Accid. Anal. Prev, 92: 130–138, (2016). DOI: https://doi.org/10.1016/j.aap.2016.03.018 CR - [13] Ale, B., “More thinking about process safety indicators”, Saf. Sci, 47: 470–471, (2009). https://doi.org/10.1016/j.ssci.2008.07.012 CR - [14] Beriha, G.S., Patnaik, B., Mahapatra, S.S. and Padhee, S., “Assessment of safety performance in Indian industries using fuzzy approach”, Expert Syst. Appl, 39: 3311–3323, (2012). DOI: https://doi.org/10.1016/j.eswa.2011.09.018 CR - [15] Abu-Khader, M.M., “Impact of Human Behaviour on Process Safety Management in Developing Countries”, Process Saf. Environ. Prot, 82: 431–437, (2004). DOI: https://doi.org/10.1205/psep.82.6.431.53206 CR - [16] Anderson, M., “Behavioural Safety and Major Accident Hazards”, Process Saf. Environ. Prot, 83: 109–116, (2005). DOI: https://doi.org/10.1205/psep.04230 CR - [17] Chen, Y., Yu, X. and Yang, Z., “A fuzzy decision support system for risk prioritization in fine kinney-based occupational risk analysis”, J. Soft Comput. Decis. Anal, 3: 1–17, (2025). DOI: https://doi.org/10.31181/jscda31202545 CR - [18] Aksüt, G., Eren, T. and Alakaş, H.M., “Using wearable technological devices to improve workplace health and safety: An assessment on a sector base with multi-criteria decision-making methods”, Ain Shams Eng. J, 15: 102423, (2024). DOI: https://doi.org/10.1016/j.asej.2023.102423 CR - [19] Ayvaz, B., Tatar, V., Sağır, Z. and Pamucar, D., “An Integrated fine-kinney risk assessment model utilizing fermatean fuzzy AHP-WASPAS for occupational hazards in the aquaculture sector”, Process Saf. Environ. Prot, 186: 232–251, (2024). DOI: https://doi.org/10.1016/j.psep.2024.04.025 CR - [20] Ayyildiz, E., Erdogan, M. and Gul, M., “A comprehensive risk assessment framework for occupational health and safety in pharmaceutical warehouses using pythagorean fuzzy bayesian networks”, Eng. Appl. Artif. Intell, 135: 108763, (2024). DOI: https://doi.org/10.1016/j.engappai.2024.108763 CR - [21] Kursunoglu, N., “Fuzzy multi-criteria decision-making framework for controlling methane explosions in coal mines”, Environ. Sci. Pollut. Res, 31: 9045–9061, (2024). DOI: https://doi.org/10.1007/s11356-023-31782-0 CR - [22] Serrato, R.B., “A novel global probabilistic fuzzy system for occupational risk assessment (GPFSORA)”, Ing. Investig, 42: e104181, (2024). DOI: https://doi.org/10.15446/ing.investig.104181 CR - [23] Sherin, S. and Raza, S., “risk analysis and prioritization with AHP and fuzzy TOPSIS techniques in surface mines of Pakistan”, J. Min. Environ, 15: 463–479, (2024). DOI: https://doi.org/10.22044/jme.2023.13687.2533 CR - [24] Ahmed, T., Hoque, A.S.M., Karmaker, C.L. and Ahmed, S., “Integrated approach for occupational health and safety (OHS) risk Assessment: An Empirical (Case) study in Small enterprises”, Saf. Sci, 164: 106143, (2023). DOI: https://doi.org/10.1016/j.ssci.2023.106143 CR - [25] Badida, P., Janakiraman, S. and Jayaprakash, J., “Occupational health and safety risk assessment using a fuzzy multi-criteria approach in a hospital in Chennai, India”, Int. J. Occup. Saf. Ergon, 29: 1047–1056, (2023). DOI: https://doi.org/10.1080/10803548.2022.2109323 CR - [26] Koulinas, G.K., Demesouka, O.E., Marhavilas, P.K., Orfanos, N.I. and Koulouriotis, D.E., “Multicriteria Health and Safety Risk Assessments in Highway Construction Projects”, Sustainability, 15: 9241, (2023). DOI: https://doi.org/10.3390/su15129241 CR - [27] Küçükarslan, A.B., Köksal, M. and Ekmekci, I., “A Model Proposal for Measuring Performance in Occupational Health and Safety in Forest Fires”, Sustainability, 15: 14729, (2023). DOI: https://doi.org/10.3390/su152014729 CR - [28] Chen, W., Yang, B. and Liu, Y., “An integrated QFD and FMEA approach to identify risky components of products”, Adv. Eng. Inform, 54: 101808, (2022). DOI: https://doi.org/10.1016/j.aei.2022.101808 CR - [29] Ye, W., Gao, C., Liu, Z., Wang, Q. and Su, W., “A Fuzzy-AHP-based variable weight safety evaluation model for expansive soil slope”, Nat. Hazards, 119: 559–581, (2023). DOI: https://doi.org/10.1007/s11069-023-06130-7 CR - [30] Marhavilas, P.K., Filippidis, M., Koulinas, G.K. and Koulouriotis, D.E., “Safety-assessment by hybridizing the MCDM/AHP & HAZOP-DMRA techniques through safety’s level colored maps: Implementation in a petrochemical industry”, Alex. Eng. J, 61: 6959–6977, (2022). DOI: https://doi.org/10.1016/j.aej.2021.12.040 CR - [31] Omidi, L., Salehi, V., Zakerian, S.A. and Nasl Saraji, J., “Assessing the influence of safety climate-related factors on safety performance using an Integrated Entropy-TOPSIS Approach”, J. Ind. Prod. Eng, 39: 73–82, (2022). DOI: https://doi.org/10.1080/21681015.2021.1958937 CR - [32] Unver, S. and Ergenc, I., “Safety risk identification and prioritize of forest logging activities using analytic hierarchy process (AHP)”, Alex. Eng. J, 60: 1591–1599, (2021). DOI: https://doi.org/10.1016/j.aej.2020.11.012 CR - 33] Ferrari, G.N., Leal, G.C.L., Galdamez, E.V.C. and Souza, R.C.T.D., “Prioritization of occupational health and safety indicators using the Fuzzy-AHP method”, Production, 30: e20200054, (2020). DOI: https://doi.org/10.1590/0103-6513.20200054 CR - [34] Zytoon, M.A., “A Decision Support Model for Prioritization of Regulated Safety Inspections Using Integrated Delphi, AHP and Double-Hierarchical TOPSIS Approach”, IEEE Access, 8: 83444–83464, (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2991179 CR - [35] Akbar, S. and Ahsan, K., “Workplace safety compliance implementation challenges in apparel supplier firms”, J. Clean. Prod, 232: 462–473, (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.05.368 CR - [36] Gul, M., Ak, M.F. and Guneri, A.F., “Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry”, J. Safety Res, 69: 135–153, (2019). DOI: https://doi.org/10.1016/j.jsr.2019.03.005 CR - [37] Dağdeviren, M. and Yüksel, İ., “Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management”, Inf. Sci, 178: 1717–1733, (2008). DOI: https://doi.org/10.1016/j.ins.2007.10.016 CR - [38] Ilbahar, E., Karaşan, A., Cebi, S. and Kahraman, C., “A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system”, Saf. Sci, 103: 124–136, (2018). DOI: https://doi.org/10.1016/j.ssci.2017.10.025 CR - [39] Raviv, G., Fishbain, B. and Shapira, A., “Analyzing risk factors in crane-related near-miss and accident reports”, Saf. Sci, 91: 192–205, (2017a). DOI: https://doi.org/10.1016/j.ssci.2016.08.022 CR - [40] Raviv, G., Shapira, A. and Fishbain, B., “AHP-based analysis of the risk potential of safety incidents: Case study of cranes in the construction industry”, Saf. Sci, 91: 298–309, (2017b). DOI: https://doi.org/10.1016/j.ssci.2016.08.027 CR - [41] Basahel, A. and Taylan, O., “Using fuzzy ahp and fuzzy topsis approaches for assessing safety conditions at worksites in construction industry”, Int. J. Saf. Secur. Eng, 6: 728–745, (2016). DOI: https://doi.org/10.2495/SAFE-V6-N4-728-745 CR - [42] Gnoni, M.G., Duraccio, V. and Iavagnilio, R., “A fuzzy AHP-based approach for assessing the faulty behaviour risk at workplace”, Int. J. Bus. Syst. Res, 10: 291, (2016). DOI: https://doi.org/10.1504/IJBSR.2016.075759 CR - [43] Enchill, E. and Nyamah, E.Y., “AHP Application In Occupational Safety Analysis In An Industrial Gas Manufacturing Company (Ghana)”, Int. J. Manag. Econ. 1, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.018 CR - [44] Podgórski, D., “Measuring operational performance of OSH management system – A demonstration of AHP-based selection of leading key performance indicators”, Saf. Sci, 73: 146–166, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.018 CR - [45] Aminbakhsh, S., Gunduz, M. and Sonmez, R., “Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects”, J. Safety Res, 46: 99–105, (2013). DOI: https://doi.org/10.1016/j.jsr.2013.05.003 CR - [46] Zheng, G., Zhu, N., Tian, Z., Chen, Y. and Sun, B., “Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments”, Saf. Sci, 50: 228–239, (2012). DOI: https://doi.org/10.1016/j.ssci.2011.08.042 CR - [47] Gürcanli, G.E. and Müngen, U., “An occupational safety risk analysis method at construction sites using fuzzy sets”, Int. J. Ind. Ergon, 39: 371–387, (2009). DOI: https://doi.org/10.1016/j.ergon.2008.10.006 CR - [48] Dağdeviren, M., Yüksel, İ. and Kurt, M., “A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system”, Saf. Sci, 46: 771–783, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.02.002 CR - [49] Zohar, D., “Safety climate: Conceptual and measurement issues”, in: Quick, J. C. , Tetrick, L. E. (Eds.), Handbook of Occupational Health Psychology. American Psychological Association, Washington, pp. 123–142, (2003). DOI: https://doi.org/10.1037/10474-006 CR - [50] Clarke, S., “The relationship between safety climate and safety performance: A meta-analytic review”, J. Occup. Health Psychol, 11: 315–327, (2006). DOI: . https://doi.org/10.1037/1076-8998.11.4.315 CR - [51] Oah, S., Na, R. and Moon, K., “The Influence of Safety Climate, Safety Leadership, Workload, and Accident Experiences on Risk Perception: A Study of Korean Manufacturing Workers”, Saf. Health Work, 9: 427–433, (2018). DOI: https://doi.org/10.1016/j.shaw.2018.01.008 CR - [52] Kouabenan, D.R., Ngueutsa, R. and Mbaye, S., “Safety climate, perceived risk, and involvement in safety management”, Saf. Sci, 77: 72–79, (2015). DOI: https://doi.org/10.1016/j.ssci.2015.03.009 CR - [53] Zohar, D. and Luria, G., “A Multilevel Model of Safety Climate: Cross-Level Relationships Between Organization and Group-Level Climates”, J. Appl. Psychol, 90: 616–628, (2005). DOI: https://doi.org/10.1037/0021-9010.90.4.616 CR - [54] Feng, Y., “Effect of safety investments on safety performance of building projects”, Saf. Sci, 59: 28–45, (2013). DOI: https://doi.org/10.1016/j.ssci.2013.04.004 CR - [55] Fang, D., Jiang, Z., Zhang, M. and Wang, H., “An experimental method to study the effect of fatigue on construction workers’ safety performance”, Saf. Sci, 73: 80–91, (2015). DOI: https://doi.org/10.1016/j.ssci.2014.11.019 CR - [56] Pinto, A., Nunes, I.L. and Ribeiro, R.A., “Occupational risk assessment in construction industry – Overview and reflection”, Saf. Sci, 49: 616–624, (2011). DOI: https://doi.org/10.1016/j.ssci.2011.01.003 CR - [57] Huang, Y.-H., Ho, M., Smith, G.S. and Chen, P.Y., “Safety climate and self-reported injury: Assessing the mediating role of employee safety control”, Accid. Anal. Prev, 38: 425–433, (2006). DOI: https://doi.org/10.1016/j.aap.2005.07.002 CR - [58] Fleming, “Effective Supervisory Safety Leadership Behaviors in the Offshore Oil and Gas Industry”, HSE Books, (2001). CR - [59] Xia, N., Xie, Q., Griffin, M.A., Ye, G. and Yuan, J., “Antecedents of safety behavior in construction: A literature review and an integrated conceptual framework”, Accid. Anal. Prev, 148: 105834, (2020). DOI: https://doi.org/10.1016/j.aap.2020.105834 CR - [60] Mohammadi, A., Tavakolan, M. and Khosravi, Y., “Factors influencing safety performance on construction projects: A review”, Saf. Sci, 109: 382–397, (2018). DOI: https://doi.org/10.1016/j.ssci.2018.06.017 CR - [61] Niskanen, T., “Safety climate in the road administration”, Saf. Sci, 17: 237–255, (1994). DOI: https://doi.org/10.1016/0925-7535(94)90026-4 CR - [62] Meliá, J.L., Mearns, K., Silva, S.A. and Lima, M.L., “Safety climate responses and the perceived risk of accidents in the construction industry”, Saf. Sci, 46: 949–958, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.11.004 CR - [63] Hayes, B.E., Perander, J., Smecko, T. and Trask, J., “Measuring Perceptions of Workplace Safety: Development and Validation of the Work Safety Scale”, J. Safety Res. 29, (1998). DOI: https://doi.org/10.1016/S0022-4375(98)00011-5 CR - [64] Kalteh, H.O., Mortazavi, S.B., Mohammadi, E. and Salesi, M., “The relationship between safety culture and safety climate and safety performance: a systematic review”, Int. J. Occup. Saf. Ergon, 27: 206–216, (2021). DOI: https://doi.org/10.1080/10803548.2018.1556976 CR - [65] Seo, H.C., Lee, Y.S., Kim, J.J. and Jee, N.Y., “Analyzing safety behaviors of temporary construction workers using structural equation modeling”, Saf. Sci, 77: 160–168, (2015). DOI: https://doi.org/10.1016/j.ssci.2015.03.010 CR - [66] Kao, K.Y., Spitzmueller, C., Cigularov, K. and Wu, H., “Linking insomnia to workplace injuries: A moderated mediation model of supervisor safety priority and safety behavior”, J. Occup. Health Psychol, 21: 91–104, (2016). DOI: https://doi.org/10.1037/a0039144 CR - [67] Xiang, Q., Ye, G., Liu, Y., Miang Goh, Y., Wang, D. and He, T., “Cognitive mechanism of construction workers’ unsafe behavior: A systematic review”, Saf. Sci, 159: 106037, (2023). DOI: https://doi.org/10.1016/j.ssci.2022.106037 CR - [68] Johnson, R.C., Eatough, E.M., Chang, C.-H. (Daisy)., Hammer, L.B. and Truxilllo, D., “Home is where the mind is: Family interference with work and safety performance in two high risk industries”, J. Vocat. Behav, 110: 117–130, (2019). DOI: https://doi.org/10.1016/j.jvb.2018.10.012 CR - [69] Liao, P.-C., Liu, B., Wang, Y., Wang, X. and Ganbat, T., “Work paradigm as a moderator between cognitive factors and behaviors – A comparison of mechanical and rebar workers”, KSCE J. Civ. Eng, 21: 2514–2525, (2017). DOI: https://doi.org/10.1007/s12205-017-0091-2 CR - [70] Barr, G.C., Kane, K.E., Barraco, R.D., Rayburg, T., Demers, L., Kraus, C.K., Greenberg, M.R., Rupp, V.A., Hamilton, K.M. and Kane, B.G., “Gender Differences in Perceptions and Self-reported Driving Behaviors Among Teenagers”, J. Emerg. Med. 48, 366-370. e3, (2015). DOI: https://doi.org/10.1016/j.jemermed.2014.09.055 CR - [71] Han, S., Saba, F., Lee, S., Mohamed, Y. and Peña-Mora, F., “Toward an understanding of the impact of production pressure on safety performance in construction operations”, Accid. Anal. Prev, 68: 106–116, (2014). DOI: https://doi.org/10.1016/j.aap.2013.10.007 CR - [72] Cox, S.J. and Cheyne, A.J.T., “Assessing safety culture in offshore environments”, Saf. Sci, (2000). DOI: https://doi.org/10.1016/S0925-7535(00)00009-6 CR - [73] Minchin, R.E., Glagola, C.R., Guo, K. and Languell, J.L., “Case for drug testing of construction workers 22”, (2006). DOI: https://doi.org/10.1061/(ASCE)0742-597X(2006)22:1(43) CR - [74] Swuste, P., Frijters, A. and Guldenmund, F., “Is it possible to influence safety in the building sector? Saf”, Sci, 50: 1333–1343, (2012). DOI: https://doi.org/10.1016/j.ssci.2011.12.036 CR - [75] Zutshi, A. and Sohal, A.S., “A framework for environmental management system adoption and maintenance: an Australian perspective”, Manag. Environ. Qual. Int. J, 16: 464–475, (2005). DOI: https://doi.org/10.1108/14777830510614330 CR - [76] Da Silva, S.L.C. and Amaral, F.G., “Critical factors of success and barriers to the implementation of occupational health and safety management systems: A systematic review of literature”, Saf. Sci, 117: 123–132, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.03.026 CR - [77] Abad, J., Lafuente, E. and Vilajosana, J., “An assessment of the OHSAS 18001 certification process: Objective drivers and consequences on safety performance and labour productivity”, Saf. Sci, 60: 47–56, (2013). DOI: https://doi.org/10.1016/j.ssci.2013.06.011 CR - [78] Kahya, E., “The effects of job characteristics and working conditions on job performance”, Int. J. Ind. Ergon, 37: 515–523, (2007). DOI: https://doi.org/10.1016/j.ergon.2007.02.006 CR - [79] Nahrgang, J.D., Morgeson, F.P. and Hofmann, D.A., “Safety at work: A meta-analytic investigation of the link between job demands, job resources, burnout, engagement, and safety outcomes”, J. Appl. Psychol, 96: 71–94, (2011). DOI: https://doi.org/10.1037/a0021484 CR - [80] Frazier, C.B., Ludwig, T.D., Whitaker, B. and Roberts, D.S., “A hierarchical factor analysis of a safety culture survey”, J. Safety Res, 45: 15–28, (2013). DOI: https://doi.org/10.1016/j.jsr.2012.10.015 CR - [81] Chen, Z.-S., Liu, X.-L., Rodríguez, R.M., Wang, X.-J., Chin, K.-S., Tsui, K.-L. and Martínez, L., “Identifying and prioritizing factors affecting in-cabin passenger comfort on high-speed rail in China: A fuzzy-based linguistic approach”, Appl. Soft Comput, 95: 106558, (2020). DOI: https://doi.org/10.1016/j.asoc.2020.106558 CR - [82] Mitropoulos, P., Cupido, G. and Namboodiri, M., “Cognitive approach to construction safety: Task demand-capability model”, J. Manag. Eng. 22, (2006). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000060 CR - [83] Park, M. and Peña‐Mora, F., “Dynamic change management for construction: introducing the change cycle into model‐based project management”, Syst. Dyn. Rev, 19: 213–242, (2003). DOI: https://doi.org/10.1002/sdr.273 CR - [84] Khosravi, Y., Asilian-Mahabadi, H., Hajizadeh, E., Hassanzadeh-Rangi, N., Bastani, H. and Behzadan, A.H., “Factors Influencing Unsafe Behaviors and Accidents on Construction Sites: A Review”, Int. J. Occup. Saf. Ergon, 20: 111–125, (2014). DOI: https://doi.org/10.1080/10803548.2014.11077023 CR - [85] Mohseni, P.H., Farshad, A.A., Mirkazemi, R. and Orak, R.J., “Assessment of the living and workplace health and safety conditions of site-resident construction workers in Tehran, Iran”, Int. J. Occup. Saf. Ergon, 21: 568–573, (2015). DOI: https://doi.org/10.1080/10803548.2015.1096061 CR - [86] Goh, Y.M., Love, P.E.D., Stagbouer, G. and Annesley, C., “Dynamics of safety performance and culture: A group model building approach”, Accid. Anal. Prev, 48: 118–125, (2012). DOI: https://doi.org/10.1016/j.aap.2011.05.010 CR - [87] Votano, S. and Sunindijo, R.Y., “Client Safety Roles in Small and Medium Construction Projects in Australia”, J. Constr. Eng. Manag, 140: 04014045, (2014). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000899 CR - [88] Guo, B.H.W., Yiu, T.W. and González, V.A., “Predicting safety behavior in the construction industry: Development and test of an integrative model”, Saf. Sci, 84: 1–11, (2016). DOI: https://doi.org/10.1016/j.ssci.2015.11.020 CR - [89] Büyüközkan, G. and Ruan, D., “Evaluation of software development projects using a fuzzy multi-criteria decision approach”, Math. Comput. Simul, 77: 464–475, (2008). DOI: https://doi.org/10.1016/j.matcom.2007.11.015 CR - [90] Beskese, A., Corum, A. and Anolay, M., “A model proposal for ERP system selection in . automotive industry”, Inf. Syst. Technol, 26: 317–342, (2019). CR - [91] Beskese, A., Demir, H.H., Ozcan, H.K. and Okten, H.E., “Landfill site selection using fuzzy ahp and fuzzy TOPSIS: A Case Study for Istanbul”, Environ. Earth Sci, 73: 3513–3521, (2015). DOI: https://doi.org/10.1007/s12665-014-3635-5 CR - [92] Torfi, F., Farahani, R.Z. and Rezapour, S., “Fuzzy AHP to determine the relative weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives”, Appl. Soft Comput, 10: 520–528, (2010). DOI: http://dx.doi.org/10.1016/j.asoc.2009.08.021 CR - [93] Saaty, T.L. and Özdemir, M.S., “How many judges should there be in a group? Ann”, Data Sci, 1: 359–368, (2014). DOI: https://doi.org/10.1007/s40745-014-0026-4 CR - [94] Ziemba, P., Piwowarski, M. and Nermend, K., “Remote work in post-pandemic reality: multi-criteria evaluation of teleconferencing software”, Sustainability, 15: 9919, (2023). DOI: https://doi.org/10.3390/su15139919 CR - [95] Shi, X., Kosari, S. and Khan, W.A., “Some novel concepts of interval-valued picture fuzzy graphs with applications toward the transmission control protocol and social networks”, Front. Phys, 11: 1260785, (2023). DOI: https://doi.org/10.3389/fphy.2023.1260785 CR - [96] Azeem, M., Ali, J. and Ali, J., “Interval-valued picture fuzzy decision-making framework with partitioned maclaurin symmetric mean aggregation operators”, Sci. Rep, 14: 23155, (2024). DOI: https://doi.org/10.1038/s41598-024-72726-z CR - [97] Cuong, B.C., “Picture fuzzy sets”, J. Comput. Sci. Cybern, 30: 409-420, (2014). DOI: https://doi.org/10.15625/1813-9663/30/4/5032 CR - [98] Khalil, A.M., Li, S.-G., Garg, H., Li, H. and Ma, S., “New Operations on Interval-Valued Picture Fuzzy Set, Interval-Valued Picture Fuzzy Soft Set and Their Applications”, IEEE Access, 7: 51236–51253, (2019). https://doi.org/10.1109/ACCESS.2019.2910844 CR - [99] Saaty, T.L., “How to make a decision: the analytic hierarchy process”, Eur. J. Oper. Res, 48: 9–26, (1990). DOI: https://doi.org/10.1016/0377-2217(90)90057-I CR - [100] Saaty, T.L., Fundamentals of the Analytic Hierarchy Process, in: Schmoldt, D, L., Kangas, J., Mendoza, G. A., Pesonen, M. (Eds.), The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, Managing Forest Ecosystems. Springer Netherlands, Dordrecht, pp. 15–35, (2001). DOI: https://doi.org/10.1007/978-94-015-9799-9_2 CR - [101] Acar, C., Beskese, A. and Temur, G.T., “Comparative fuel cell sustainability assessment with a novel approach”, Int. J. Hydrog. Energy, 47: 575–594, (2022). DOI: https://doi.org/10.1016/j.ijhydene.2021.10.034 CR - [102] Erdoğan, M. and Kaya, İ., “A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey”, Appl. Soft Comput, 39: 84–93, (2016). DOI: https://doi.org/10.1016/j.asoc.2015.11.013 CR - [103] Yildiz, D., Temur, G.T., Beskese, A. and Bozbura, F.T., “Evaluation of positive employee experien ce using hesitant fuzzy analytic hierarchy process”, J. Intell. Fuzzy Syst, 38: 1043–1058, (2020). DOI: https://doi.org/10.3233/JIFS-179467 CR - [104] Abdullah, L. and Goh, P., “Decision making method based on Pythagorean fuzzy sets and its application to solid waste management”, Complex & intelligent systems, 5(2): 185-198, (2019). DOI: https://doi.org/10.1007/s40747-019-0100-9 CR - [105] Gündoğdu, F. K., Duleba, S., Moslem, S. and Aydın, S., “Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model”, Applied Soft Computing, 100: 106920, (2021). DOI: https://doi.org/10.1016/J.ASOC.2020.106920 CR - [106] Wan Mohd, W.R., Abdullah, L., Yusoff, B., Taib, C.M.I.C.1, and Merigo, J.M., “An integrated MCDM model based on Pythagorean fuzzy sets for green supplier development program”, Malaysian Journal of Mathematical Sciences, 13(S): 23–37, (2019). CR - [107] Saaty, T.L., “The analytic hierarchy process-what it is and how it is used”, Math. Model. 9, (1987). DOI: http://dx.doi.org/10.1016/0270-0255(87)90473-8 CR - [108] Masmali, I., Hassan, R., Shuaib, U., Razaq, A., Razzaque, A. and Alhamzi, G., “Stock Reordering Decision Making under Interval Valued Picture Fuzzy Knowledge”, Symmetry, 15: 898, (2023). DOI: https://doi.org/10.3390/sym15040898 CR - [109] Naeem, M., Qiyas, M. and Abdullah, S., “An Approach of Interval-Valued Picture Fuzzy Uncertain Linguistic Aggregation Operator and Their Application on Supplier Selection Decision-Making in Logistics Service Value Concretion”, Math. Probl. Eng, 2021: 1–19, (2021). DOI: https://doi.org/10.1155/2021/8873230 CR - [110] Lingard, H., Cooke, T. and Blismas, N., “Do Perceptions of Supervisors’ Safety Responses Mediate the Relationship between Perceptions of the Organizational Safety Climate and Incident Rates in the Construction Supply Chain? J”, Constr. Eng. Manag, 138: 234–241, (2012). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000372 CR - [111] Molenaar, K.R., Park, J.I. and Washington, S., “Framework for Measuring Corporate Safety Culture and Its Impact on Construction Safety Performance”, J. Constr. Eng. Manag, 135: 488–496, (2009). DOI: https://doi.org/10.1061/(ASCE)0733-9364(2009)135:6(488) CR - [112] Gümüştaş, C. and Küskü, F., “Dynamics of Organizational Distrust: An Exploratory Study in Workplace Safety”, Saf. Sci, 134: 105032, (2021). DOI: https://doi.org/10.1016/j.ssci.2020.105032 CR - [113] Leung, M.Y., Liang, Q. and Olomolaiye, P., “Impact of job stressors and stress on the safety behavior and accidents of construction workers”, J. Manag. Eng. 32, (2016). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000373 CR - [114] Mohamed, S., Ali, T.H. and Tam, W.Y.V., “National culture and safe work behaviour of construction workers in Pakistan”, Saf. Sci, 47: 29–35, (2009). DOI: https://doi.org/10.1016/j.ssci.2008.01.003 CR - [115] Sun, X., Chong, H.-Y., Liao, P.-C., Fang, D. and Wang, Y., “A System Dynamics Model of Prevention through Design towards Eliminating Human Error”, KSCE J. Civ. Eng, 23: 1923–1938, (2019). DOI: https://doi.org/10.1007/s12205-019-0845-0 CR - [116] Pybus, R., Safety Management: Strategy and Practice, Butterworth-Heinemann, (1996). CR - [117] Arcury, T.A., Summers, P., Carrillo, L., Grzywacz, J.G., Quandt, S.A. and Mills, T.H., “Occupational safety beliefs among Latino residential roofing workers”, Am. J. Ind. Med, 57: 718–725, (2014). DOI: https://doi.org/10.1002/ajim.222 CR - [118] Stege, T.A.M., Bolte, J.F.B., Claassen, L. and Timmermans, D.R.M., “Particulate matter exposure in roadwork companies: A mental models study on work safety”, Saf. Sci, 120: 137–145, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.06.043 CR - [119] Ju, D., Qin, X., Xu, M. and DiRenzo, M.S., “Boundary conditions of the emotional exhaustion-unsafe behavior link: The dark side of group norms and personal control”, Asia Pac. J. Manag, 33: 113–140, (2016). DOI: https://doi.org/10.1007/s10490-015-9455-7 CR - [120] Patel, D.A. and Jha, K.N., “Neural Network Approach for Safety Climate Prediction”, J. Manag. Eng, 31: 05014027, (2015). DOI: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000348 CR - [121] Choudhry, R.M. and Fang, D., “Why operatives engage in unsafe work behavior: Investigating factors on construction sites”, Saf. Sci, 46: 566–584, (2008). DOI: https://doi.org/10.1016/j.ssci.2007.06.027 CR - [122] Hon, C.K.H., Chan, A.P.C. and Wong, F.K.W., “An analysis for the causes of accidents of repair, maintenance, alteration and addition works in Hong Kong”, Saf. Sci, 48: 894–901, (2010). DOI: https://doi.org/10.1016/j.ssci.2010.03.013 CR - [123] Jitwasinkul, B. and Hadikusumo, B.H.W., “Identification of Important Organisational Factors Influencing Safety Work Behaviours in Construction Projects”, J. Civ. Eng. Manag, 17: 520–528, (2011). DOI: https://doi.org/10.3846/13923730.2011.604538 CR - [124] Manzey, D. and Marold, J., “Occupational accidents and safety: The challenge of globalization 47, 723–726”, (2009). DOI: https://doi.org/10.1016/j.ssci.2008.01.013 CR - [125] Hallowell, M.R., Hinze, J.W., Baud, K.C. and Wehle, A., “Proactive Construction Safety Control: Measuring, Monitoring, and Responding to Safety Leading Indicators”, J. Constr. Eng. Manag, 139: 04013010, (2013). DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000730 CR - [126] Stoilkovska, B.B., Žileska Pančovska, V. and Mijoski, G., “Relationship of safety climate perceptions and job satisfaction among employees in the construction industry: the moderating role of age”, Int. J. Occup. Saf. Ergon, 21: 440–447, (2015). DOI: https://doi.org/10.1080/10803548.2015.1096059 CR - [127] Feng, Y., Teo, E.A.L., Ling, F.Y.Y. and Low, S.P., “Exploring the interactive effects of safety investments, safety culture and project hazard on safety performance: An empirical analysis”, Int. J. Proj. Manag, 32: 932–943, (2014). DOI: https://doi.org/10.1016/j.ijproman.2013.10.016 CR - [128] Cheng, C.W., Leu, S.S., Lin, C.C. and Fan, C., “Characteristic analysis of occupational accidents at small construction enterprises”, Saf. Sci, 48: 698–707, (2010). DOI: https://doi.org/10.1016/j.ssci.2010.02.001 CR - [129] Kang, K. and Ryu, H., “Predicting types of occupational accidents at construction sites in Korea using random forest model”, Saf. Sci, 120: 226–236, (2019). DOI: https://doi.org/10.1016/j.ssci.2019.06.034 UR - https://doi.org/10.35378/gujs.1501298 L1 - https://dergipark.org.tr/en/download/article-file/4005988 ER -