TY - JOUR T1 - Alkali Hidroliz Ortamda Sıcaklık Değişimi Etkisiyle Tekstil Tipi Cam Elyafların Malzeme Karakteristiğinin Etkileşimi Üzerine Bir Analiz TT - An Analysis on the Interaction of Material Characteristics of Textile Type Glass Fibers with the Effect of Temperature Change in Alkaline Hydrolysis Environment AU - Kalkan, Şevket Onur AU - Gündüz, Lütfullah PY - 2025 DA - April Y2 - 2024 DO - 10.7212/karaelmasfen.1505979 JF - Karaelmas Fen ve Mühendislik Dergisi PB - Zonguldak Bulent Ecevit University WT - DergiPark SN - 2146-7277 SP - 21 EP - 34 VL - 15 IS - 1 LA - tr AB - Çimento bağlayıcılı ürünlerde cam elyaf takviyesi ile ilgili en temel kaygı, cam elyafların alkali ortamda dayanıksız olmasıdır. Yapılan çalışmalarda cam elyafların çimentonun alkali ortamından zarar görebileceği belirtilmektedir. Ayrıca, alkali ortamın sıcaklık derecesi de cam elyaf üzerindeki etkiyi değiştirebilmektedir. Bu çalışmada, 2 farklı tekstil tipi cam elyaf, alkali ortam koşullarına maruz bırakılmıştır. Kullanılan cam elyaflar atık/artık malzeme olarak toplanmış fiziksel geri dönüşümle elde edilmiş 6 mm boy, ortalama 15 µm çap (GFa) ve 12 mm boy, ortalama 17 µm çap (GFb) boyutlarındadır. Çalışma kapsamında 3 farklı derişimde NaOH çözeltileri hazırlanmıştır. Bu derişimler %0.5, %1.5 ve %3’lük ağırlıkça NaOH/Su çözeltileridir. Çalışma kapsamında 12 farklı sıcaklık değerleri uygulanmış olup sırasıyla 20°C, 24°C, 30°C, 35°C, 40°C, 45°C, 70°C, 75°C, 80°C, 85°C, 90°C ve 95°C’dir. Cam elyafları farklı sıcaklık ve derişimde NaOH çözeltisinde 4 saat süre boyunca etkileşime maruz bırakılmıştır. Alkali etkileşimi sonrası elyafların kütle kaybı ve elyaf çaplarının değişimi incelenmiştir. Çalışma sonuçlarına göre, GFa elyafının %0.5, %1.5 ve %3 NaOH hidrolizinde 20oC normal oda sıcaklığında kütle kaybı değerleri sırasıyla %0.444, %0.682 ve %0.913’tür. GFb elyaf örneğinin 20oC sıcaklık etkisinde kütle kaybı ise sırasıyla ortalama %0.524, %0.712 ve %0.994’tür. 20oC normal oda sıcaklığı koşullarında 4 saat süreyle 3 farklı %0.5, %1.5 ve %3’lük NaOH hidrolizi sonucu elyaf çaplarındaki değişim sırasıyla, GFa için 14.960, 14.949 ve 14.931 µm ve GFb için 16.955, 16.939 ve 16.915 µm olarak belirlenmiştir. Sıcaklık arttıkça her iki elyaf türü için de hem kütle hem de elyaf çapının azaldığı kaydedilmiştir. KW - Alkali ortam dayanıklılığı KW - cam elyaf KW - NaOH çözeltisi KW - sıcaklık ve süre. N2 - The main concern about glass fiber reinforcement in cement-based products is that glass fibers are not durable in alkaline environments. Studies have shown that glass fibers can be damaged by the alkaline environment of cement. In addition, the temperature of the alkaline environment can also change the effect on glass fibers. In this study, 2 different textile types of glass fibers were exposed to alkaline environment conditions. The glass fibers used were collected as waste/residual material and obtained through physical recycling, with dimensions of 6 mm length, average diameter of 15 µm (GFa) and 12 mm length, average diameter of 17 µm (GFb). Within the scope of the study, NaOH solutions were prepared at 3 different concentrations. These concentrations are by weight of 0.5%, 1.5% and 3% NaOH/water solutions. In this study, 12 different temperature values were applied and they are 20°C, 24°C, 30°C, 35°C, 40°C, 45°C, 70°C, 75°C, 80°C, 85°C, 90°C and 95°C, respectively. Glass fibers were exposed to interaction in NaOH solution at different temperatures and concentrations for 4 hours. The mass loss of the fibers and the change in fiber diameters after alkali interaction were investigated. According to the study results, the mass loss values of GFa fiber in 0.5%, 1.5% and 3% NaOH hydrolysis at 20°C normal room temperature were 0.444%, 0.682% and 0.913%, respectively. The mass loss of GFb fiber sample under 20°C temperature effect was 0.524%, 0.712% and 0.994% on average, respectively. The changes in fiber diameters as a result of 3 different 0.5%, 1.5% and 3% NaOH hydrolysis for 4 hours at 20°C normal room temperature conditions were determined as 14.960, 14.949 and 14.931 µm for GFa and 16.955, 16.939 and 16.915 µm for GFb, respectively. It was noted that both mass and fiber diameter decreased as the temperature increased for both fiber types. CR - Charles, RJ. 1958. Static fatigue of glass. II. Journal of Applied Physics, 29(11): 1554-1560. CR - Cohen, EB., Diamond, S. 1975. Validity of flexural strength reduction as an indication of alkali attack on glass in fibre reinforced cement composites. Fibre Reinforced Cement and Concrete, RILEM Symposium, 315-325. CR - Gilbert, GT. 2004. GFRC-30 years of high fiber cement composite applications worldwide. Special Publication, 224:1- 20. CR - Hussain, S., Yadav, JS. 2023. Mechanical and Durability Performances of Alkali-resistant Glass Fiber-reinforced Concrete. Jordan Journal of Civil Engineering, 17(2): 231-246. Doi:10.14525/JJCE.v17i2.06 CR - Krauklis, AE., Echtermeyer, AT. 2018. Long-term dissolution of glass fibers in water described by dissolving cylinder zeroorder kinetic model: Mass loss and radius reduction. Open Chemistry, 16(1): 1189-1199. Doi:10.1515/chem-2018-0133 CR - Litherland, KL., Oakley, DR., Proctor, BA. 1981. The use of accelerated ageing procedures to predict the long-term strength of GRC composites. Cement and Concrete Research, 11 (3): 455-466. Doi:10.1016/0008-8846(81)90117-4 CR - Majumdar, AJ. 1980. Some aspects of glass fibre reinforced cement research. Advances in Cement-Matrix Composites:Proceedings, Symposium L Materials Research Society, Annual Meeting, 37-60, USA. CR - Oh, HS., Moon, DY., Kim, SD. 2011. An investigation on durability of mixture of alkali-resistant glass and epoxy for civil engineering application. Procedia Engineering, 14: 2223- 2229. Doi: 10.1016/j.proeng.2011.07.280 CR - Park, JM., Shin, WG., Yoon, DJ. 1999. A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques. Composites Science and Technology, 59(3): 355-370. Doi: 10.1016/S0266-3538(98)00085-2 CR - Péra, J., Ambroise, J. 2004. New applications of calcium sulfoaluminate cement. Cement and Concrete Research, 34(4): 671-676. Doi: 10.1016/j.cemconres.2003.10.019 CR - Rev Glass, 2024. REV Glass Fiber Company, Ürün Teknik Bilgi Dokümanı, İzmir. CR - Rostami, R., Zarrebini, M., Mandegari, M., Sanginabadi, K., Mostofinejad, D., Abtahi, SM. 2019. The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cement and Concrete Composites, 97: 118-124. Doi: 10.1016/j. cemconcomp.2018.12.012 CR - Scheffler, C., Gao, SL., Plonka, R., Mäder, E., Hempel, S., Butler, M., Mechtcherine, V. 2009. Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete II: Water adsorption and composite interphases. Composites Science and Technology, 69(7-8): 905-912. Doi: 10.1016/j.compscitech.2008.12.020 CR - Shan, Y., Liao, K. 2001. Environmental fatigue of unidirectional glass–carbon fiber reinforced hybrid composite. Composites Part B: Engineering, 32(4): 355-363. Doi: 10.1016/S1359- 8368(01)00014-2 CR - Silva, MA., Estêvão, M. 2020. Alkaline Attack on Cement or Lime Mortar and Glass Fiber-Reinforced Polymer Rods. ACI Materials Journal, 117(1): 97-106. Doi: 10.14359/51719071 CR - Sim, J., Park, C. 2005. Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6-7): 504-512. Doi: 10.1016/j. compositesb.2005.02.002 CR - Tsotsis, TK., Keller, S., Lee, K., Bardis, J., Bish, J. 2001. Aging of polymeric composite specimens for 5000 hours at elevated pressure and temperature. Composites Science and Technology, 61(1): 75-86. Doi:10.1016/S0266-3538(00)00196-2 CR - Wang, G., Zhang, J., Li, F., Li, K., Xin, M., Zhu, J., Lu, X., Cheng, X., Zhang, L. (2023). Enhancement of Alkali Resistance of Glass Fibers via In Situ Modification of Manganese-Based Nanomaterials. Materials, 16(16): 5663. Doi:10.3390/ma16165663 CR - Wei, B., Cao, H., Song, S. 2010. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials & Design, 31(9): 4244-4250. Doi:10.1016/j.matdes.2010.04.009 CR - Xing, D., Chen, L., Ma, Q., Hao, B., Gutnikov, SI., Lazoryak, BI., Mäder, E., Ma, PC. 2020. What happens to glass fiber under extreme chemical conditions?. Journal of Non-Crystalline Solids, 548:120331. Doi: 10.1016/j.jnoncrysol.2020.120331 CR - Yousef, S., Kalpokaitė-Dičkuvienė, R. 2024. Sustainable mortar reinforced with recycled glass fiber derived from pyrolysis of wind turbine blade waste. Journal of Materials Research and Technology, 31:879-887. UR - https://doi.org/10.7212/karaelmasfen.1505979 L1 - https://dergipark.org.tr/en/download/article-file/4026609 ER -